Jet in Supersonic Crossflow

Jet in Supersonic Crossflow
-0 %
 HC runder Rücken kaschiert
Print on Demand | Lieferzeit: Print on Demand - Lieferbar innerhalb von 3-5 Werktagen I

Unser bisheriger Preis:ORGPRICE: 106,99 €

Jetzt 106,98 €* HC runder Rücken kaschiert

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9789811360244
Veröffentl:
2019
Einband:
HC runder Rücken kaschiert
Erscheinungsdatum:
04.03.2019
Seiten:
300
Autor:
Mingbo Sun
Gewicht:
617 g
Format:
241x160x22 mm
Sprache:
Englisch
Beschreibung:

Prof. Mingbo Sun is the Director of Science and Technology at the Scramjet Laboratory, National University of Defense Technology (NUDT) in China. The Laboratory has carried out extensive research into fuel injection, mixing and combustion in scramjet combustors, significantly advancing the development of scramjet engines in China. Prof. Mingbo Sun holds a PhD in Aerospace Science and Technology (2008) and a bachelor's degree in Aerodynamic Engineering (2003), both from the NUDT. His thesis on "Studies on Flow Patterns and Flameholding Mechanisms of Cavity Flameholders in Supersonic Flows" received the outstanding doctoral dissertation award. He began his research career as a Lecturer at the NUDT in 2008 and was promoted to a Professor of Science and Technology in 2014. He has been working on experimental and numerical studies of supersonic flow/combustion in scramjet engines for the past 15 years. He received the Excellent Youth Fund Award from the National Natural Science Foundation of China for his outstanding research in supersonic combustion. He has authored over 91 SCI-indexed journal papers and holds 16 patents.

Dr. Hongbo Wang is an Associate Professor at the National University of Defense Technology (NUDT) in China. He received his PhD degree in Aerospace Science and Technology (2012), Master of Science degree in Aerospace Science and Technology (2007), and bachelor's degree in Aerodynamic Engineering (2005), all from the NUDT. He was a visiting PhD student in Aerospace Engineering at the University of Sheffield (UK) from 2009 to 2010. His thesis on "Combustion Modes and Oscillation Mechanisms of Cavity-Stabilized Jet Combustion in Supersonic Flows" received the outstanding doctoral dissertation award. He began his Hypersonic Propulsion Technology research career working as a Lecturer at NUDT in 2012. He has conducted extensive research in the area of scramjet combustor design, supersonic combustion, and computational fluid/combustion dynamics, authored over 50 publications in journals and holds several patents.

Dr. Feng Xiao is an Associate Professor at the National University of Defense Technology in China. He received his B.Eng. in Flight Vehicle Design and Engineering from Tsinghua University in China (2007) and PhD in Aerospace Engineering from Loughborough University in the UK (2012). Over the past 10 years, Dr. Feng Xiao has been working on numerical and experimental studies of atomization processes in engines. During his PhD studies, he developed an incompressible two-phase flow code for simulations of atomization in gas turbines. Since joining the National University of Defense Technology, he has mainly focused on atomization in scramjet engines and developed numerical methods for Large Eddy Simulation of atomization in supersonic flows. He has also carried out experimental measurements of atomization in supersonic flows using modern optical instruments such as high-speed photography and PIV.

Based on research into jets in supersonic crossflow carried out by the authors' team over the past 15 years, this book summarizes and presents many cutting-edge findings and analyses on this subject. It tackles the complicated mixing process of gas jets and atomization process of liquid jets in supersonic crossflow, and studies their physical mechanisms. Advanced experimental and numerical techniques are applied to further readers' understanding of atomization, mixing, and combustion of fuel jets in supersonic crossflow, which can promote superior fuel injection design in scramjet engines. The book offers a valuable reference guide for all researchers and engineers working on the design of scramjet engines, and will also benefit graduate students majoring in aeronautical and aerospace engineering.
Presents advanced experimental and numerical techniques for studying jets in supersonic crossflow
Introduction.- Spatial distribution of gaseous jet in supersonic crossflow.- Flow structures of gaseous jet in supersonic crossflow.- Mixing characteristics of gaseous jet in supersonic crossflow.- Combustion characteristics of gaseous jets in the supersonic crossflow.- Liquid jet primary breakup in supersonic crossflow.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.