Chemical Elements in Plants and Soil: Parameters Controlling Essentiality

Chemical Elements in Plants and Soil: Parameters Controlling Essentiality
-0 %
 Paperback
Print on Demand | Lieferzeit: Print on Demand - Lieferbar innerhalb von 3-5 Werktagen I

Unser bisheriger Preis:ORGPRICE: 213,99 €

Jetzt 160,47 €* Paperback

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9789400791848
Veröffentl:
2014
Einband:
Paperback
Erscheinungsdatum:
02.11.2014
Seiten:
204
Autor:
Stefan Fränzle
Gewicht:
438 g
Format:
260x193x12 mm
Serie:
45, Tasks for Vegetation Science
Sprache:
Englisch
Beschreibung:

Stefan Fränzle, born 1961, is an instructor at Zittau University (Germany), teaching environmental sciences and technology, including analytics and ecotoxicology. His main research interests are applied (environmental) photochemistry, biological element cycles and element management in organisms, including bioinorganic chemistry and ecological stoichiometry. Dr. Fränzle has so far (co)published 6 books.

Earlier works on plant essential elements have revealed a series of complicated, counter-intuitive relationships among various chemical elements in different plant species, due to both unlike usage of certain elements in plants and to different carriers effecting resorption and transport.

In an attempt to provide a more coherent theory behind plant mineral nutrition, this groundbreaking book adopts a very different approach from the existing literature, presenting an explanation of the essentiality of chemical elements in biological systems and the application of stoichiometric network analysis (SNA) to the biological system of elements. Starting with data from biochemical environmental analysis, and a discussion of the phenomena involved in metal ion partition and autocatalytic behaviour, conditions and criteria controlling the partition of metals into biomass are investigated. Several rules are derived and investigated in terms of their interaction both in comparisons among contemporary organisms and in terms of evolution. This allows the construction, for example of a map which directly traces the biological feature of essentiality to parameters of coordination chemistry.

The book will have worldwide appeal for researchers interested in fields such as soil/plant interactions, bioinorganic chemistry, plant nutrition, phytomining, bioremediation, biogeochemistry, nutrient cycling, soil chemistry, and cellular physiology.

In order to give a more coherent theory behind plant mineral nutrition, this book offers an explanation of the essentiality of chemical elements in biological systems and the application of stoichiometric network analysis to the biological system of elements.
Novel thinking on plant nutrition

From the contents

Introduction.- 1. The biological System of Elements. 1.1. Principles of Element Distribution in Plants. 1.2. Methodology of Inquiries into the Biological System of Elements.- 2. Autocatalytic Processes and the Role of Essential Elements in Plant Growth. 2.1. Biomass Stability in the Light of Gibbs's Phase Rule. 2.2. Coordination-Chemical Control of Element Uptake. 2.3. Some Remarks on Chemical Ecology.- 3. A Causal Model of Biochemical Essentiality. 3.1. Influence of Intrinsic Bonding Stability and Ligand Sensitivity on the Biocatalytic Properties of Metal Ions. 3.2. Complex Stability in Relation to other Bioorganic Parameters. 3.3. Scope of the Essentiality Model.- 4. The Evolution of Essentiality. 4.1. Evolution and Biochemical Catalysis. 4.2. The Three-Function-Rule as a Controlling Factor in the Origins of Essentiality. 4.3. Biogeochemical Fractionation Processes and essentiality Patterns in Different Taxa under Changing Biogeochemical Boundary Conditions.- References.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.