Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems

Multidisciplinary Design Optimization Methods for Electrical Machines and Drive Systems
-0 %
 Paperback
Print on Demand | Lieferzeit: Print on Demand - Lieferbar innerhalb von 3-5 Werktagen I

Unser bisheriger Preis:ORGPRICE: 93,08 €

Jetzt 93,07 €* Paperback

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9783662569962
Veröffentl:
2018
Einband:
Paperback
Erscheinungsdatum:
30.03.2018
Seiten:
256
Autor:
Gang Lei
Gewicht:
394 g
Format:
235x155x15 mm
Serie:
Power Systems
Sprache:
Englisch
Beschreibung:

Gang Lei received the B.S. degree in Mathematics from Huanggang Normal University, China, in 2003, the M.S. degree in Mathematics and Ph.D. degree in Electrical Engineering from Huazhong University of Science and Technology, China, in 2006 and 2009, respectively.

He is currently a Chancellor's Postdoctoral Research Fellow at School of Electrical, Mechanical and Mechatronic Systems, University of Technology, Sydney (UTS), Sydney, Australia. He is a core member of the Green Energy & Vehicle Innovation Centre (GEVIC) which is one of the Research Strengths at UTS. His current research interests include numerical analysis of electromagnetic field, design and optimization of advanced electrical drive systems for renewable energy systems and applications.

Jianguo Zhu received the B.E. from the Jiangsu Institute of Technology, Zhenjiang, China, in 1982, the M.E. from Shanghai University of Technology, Shanghai, China, in 1987, and the Ph.D. from University of Technology Sydney (UTS), Sydney, Australia, in 1995.

He is currently a Professor of Electrical Engineering and the Head of the School of Electrical, Mechanical and Mechatronic Systems, UTS. He is the co-director of the Green Energy & Vehicle Innovation Centre (GEVIC) which is one of the Research Strengths at UTS. His research interests include electromagnetics, magnetic properties of materials, electrical machines and drives, power electronics, renewable energy systems, and smart micro-grids.

Youguang Guo received the B.E. from Huazhong University of Science and Technology (HUST), Wuhan, China, in 1985, the M.E. from Zhejiang University, Zhejiang, China, in 1988, and the Ph.D. from University of Technology Sydney (UTS), Sydney, Australia in 2004, all in Electrical Engineering.

From 1988 to 1998, he lectured in the Department of Electric Power Engineering, HUST. From March 1998 to July 2008, he was a Visiting Research Fellow, Ph.D. candidate, Postdoctoral Fellow, and Research Fellow in the Center for Electrical Machines and Power Electronics, Faculty of Engineering, UTS. He is currently an Associate Professor at the School of Electrical, Mechanical and Mechatronic Systems, UTS. He is a core member of the Green Energy & Vehicle Innovation Centre (GEVIC) which is one of the Research Strengths at UTS. His research fields include measurement and modeling of magnetic properties of magnetic materials, numerical analysis of electromagnetic field, electrical machine design and optimization, power electronic drives and control.

This book presents various computationally efficient component- andsystem-level design optimization methods for advanced electrical machines anddrive systems. Readers will discover novel design optimization conceptsdeveloped by the authors and other researchers in the last decade, includingapplication-oriented, multi-disciplinary, multi-objective, multi-level, deterministic,and robust design optimization methods. A multi-disciplinary analysis includesvarious aspects of materials, electromagnetics, thermotics, mechanics, powerelectronics, applied mathematics, manufacturing technology, and quality controland management. This book will benefit both researchers and engineers in thefield of motor and drive design and manufacturing, thus enabling the effectivedevelopment of the high-quality production of innovative, high-performancedrive systems for challenging applications, such as green energy systems andelectric vehicles.

Broadens your understanding of new material and topology
Introduction.- Design fundamentals of electrical machines and drive systems.- Optimization methods.- Design optimization methods for electrical machines.- Design optimization methods for electrical drive systems.- Design optimizationfor high quality mass production.- Application-oriented design optimization methods forelectrical machines.- Conclusion and future works.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.