Pyroelectric Materials

Pyroelectric Materials
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.
Physics and Applications
 E-Book
Sofort lieferbar | Lieferzeit: Sofort lieferbar

124,99 €* E-Book

Artikel-Nr:
9783527839728
Veröffentl:
2022
Einband:
E-Book
Seiten:
256
Autor:
Ashim Kumar Bain
eBook Typ:
PDF
eBook Format:
Reflowable E-Book
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Pyroelectric Materials An authoritative and practical discussion of pyroelectric materials and their applications In Pyroelectric Materials: Physics and Applications, the authors deliver a comprehensive exploration of the physics of pyroelectric materials and their applications. With authoritative coverage of a wide variety of critical topics in the field, the authors provide the readers with chapters on dielectric fundamentals, pyroelectricity, pyroelectric materials and their applications such as pyroelectric infrared detectors, pyroelectric energy harvesting, and pyroelectric fusion. Readers will also find: A thorough introduction to the fundamentals of dielectrics, including discussions of polarization, dispersion, relaxation, and the molecular theory of induced charges in a dielectric Comprehensive explorations of pyroelectricity, including its history, theory, and a simple model of pyroelectric effect Perfect for researchers and professionals with an interest in pyroelectric materials, the book is also useful for graduate students taking courses involving pyroelectric materials and their applications.
The book provides an overview of pyroelectric materials and their devices for applications in sensing, energy harvesting and fusion research, complemented by the physical fundamentals of dielectric materials in general and pyroelectric materials in particular.
1 Fundamentals of Dielectrics1.1 Dielectrics1.1.1 Polarization of Dielectrics1.1.2 Dispersion of Dielectric Polarization1.1.2.1 Electronic Polarization1.1.2.2 Ionic Polarization1.1.2.3 Orientation Polarization1.1.2.4 Space Charge Polarization1.1.3 Dielectric relaxation1.1.4 Debye relaxation1.1.5 Molecular Theory of Induced Charges in a Dielectric1.1.6: Capacitance of a Parallel Plate Capacitor1.1.7 Electric displacement field, Dielectric constant, and Electric susceptibility1.1.8 Local Field in a Dielectric1.1.8.1 Lorentz field, E21.1.8.2 Field of dipoles inside cavity, E31.1.9 Dielectrics Losses1.1.9.1 Dielectric Loss Angle1.1.9.2 Total and Specific Dielectric Losses1.1.10: Dielectrics Breakdown2 Pyroelectricity2.1 Introduction2.2 History of pyroelectricity2.3 Theory of Pyroelectricity2.4 Simple model of pyroelectric effect2.5 Pyroelectric crystal symmetry2.6 Piezoelectricity2.7 Ferroelectricity2.7.1 Ferroelectric Phase Transitions2.7.2 Ferroelectric Domains2.7.3 Ferroelectric Domain Wall Motion2.7.4 Soft mode3 Pyroelectric materials and Applications3.1 Introduction3.2 Theory of Pyroelectric Detectors3.3 Material Figure-of-Merits3.4 Classification of pyroelectric materials3.4.1 Single crystals3.4.1.1 Triglycine sulphate (TGS)3.4.1.2 Lithium tantalate (LT) and Lithium niobate (LN)3.4.1.3 Barium strontium titanate (BST)3.4.1.4 Strontium barium niobite (SBN)3.4.2 Perovskite Ceramics3.4.2.1 Modified lead zirconate (PZ)3.4.2.2 Modified lead titanate (PT)3.4.3 Polymers3.4.4 Ceramic-polymer composites3.4.5 Lead-free ceramics3.4.6 Other pyroelectric materials3.4.6.1 Aluminium nitride (AlN)3.4.6.2 Gallium nitride (GaN)3.4.6.3 Zinc oxide (ZnO)4 Pyroelectric Infrared Detectors4.1 Introduction4.2 Device configurations4.2.1 Thick film detectors4.2.2 Thin film detectors4.2.3 Hybrid focal plane array detector4.2.4 Linear array detector4.2.5 Periodic domain TFLTTM detector4.2.6 Terahertz thermal detector4.2.7 PVDF polymer detector4.2.8 TFP polymer detector4.2.9 TADPh polymer detector4.2.10 Integrated resonant absorber pyroelectric detector4.2.11 Resonant IR detector4.2.12: Plasmonic IR detector4.2.13: Graphene pyroelectric bolometer5 Pyroelectric Energy Harvesting5.1 Introduction5.2 Theory of Pyroelectric Energy harvesting5.3 Pyroelectricity in Ferroelectric Materials5.3.1 Thermodynamic Cycles of PyEH5.3.1 (a) Carnot Cycle5.3.1 (b) Ericsson Cycle5.3.1 (c) Olsen Cycle5.4 Pyroelectric Generators5.5 Pyroelectric Nanogenerators5.5.1 Polymer Based Pyroelectric Nanogenerators5.5.1.1 PyNGs Driven by Various Environmental Conditions5.5.1.2 Development of Pyroelectric Materials5.5.1.3 Wearable Pyroelectric Nanogenerators5.5.1.4 Hybrid Pyroelectric Nanogenerators5.5.2 Ceramic Based Pyroelectric Nanogenerators5.5.2.1 ZnO based pyroelectric Nanogenerators5.5.2.2 PZT based pyroelectric Nanogenerators5.5.2.3 Lead-free Ceramic based pyroelectric Nanogenerators5.5.3 Thermal nanophotonic- pyroelectric nanogenerator5.5.4 Challenges and Perspectives of Pyroelectric nanogenerators6 Pyroelectric fusion6.1 Introduction6.2 History of Pyroelectric Fusion6.3 Pyroelectric neutron generators6.4 Pyroelectric X-ray generators

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.