Real-time Monitoring and Operational Control of Drinking-Water Systems

Real-time Monitoring and Operational Control of Drinking-Water Systems
-0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar

Unser bisheriger Preis:ORGPRICE: 162,20 €

Jetzt 149,78 €* eBook

Artikel-Nr:
9783319507514
Veröffentl:
2017
Einband:
eBook
Seiten:
428
Autor:
Vicenç Puig
Serie:
Advances in Industrial Control
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees.The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain.The proposed approaches and tools cover:* decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators-pumping stations and pressure regulation valves- and intermediate storage tanks to be operated to meet demand using the most sustainable types of source and with minimum electricity costs;* decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection and diagnosis techniques and using information from hundreds of flow, pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators;* consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns, providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level.Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increased population, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.
This book presents a set of approaches for the real-time monitoring and control of drinking-water networks based on advanced information and communication technologies. It shows the reader how to achieve significant improvements in efficiency in terms of water use, energy consumption, water loss minimization, and water quality guarantees.

The methods and approaches presented are illustrated and have been applied using real-life pilot demonstrations based on the drinking-water network in Barcelona, Spain.

The proposed approaches and tools cover:

• decision-making support for real-time optimal control of water transport networks, explaining how stochastic model predictive control algorithms that take explicit account of uncertainties associated with energy prices and real demand allow the main flow and pressure actuators—pumping stations and pressure regulation valves— and intermediate storage tanks to beope
rated to meet demand using the most sustainable types of source and with minimum electricity costs;
• decision-making support for monitoring water balance and distribution network quality in real time, implementing fault detection and diagnosis techniques and using information from hundreds of flow, pressure, and water-quality sensors together with hydraulic and quality-parameter-evolution models to detect and locate leaks in the network, possible breaches in water quality, and failures in sensors and/or actuators;
• consumer-demand prediction, based on smart metering techniques, producing detailed analyses and forecasts of consumption patterns, providing a customer communications service, and suggesting economic measures intended to promote more efficient use of water at the household level.

Researchers and engineers working with drinking-water networks will find this a vital support in overcoming the problems associated with increasedpopu
lation, environmental sensitivities and regulation, aging infrastructures, energy requirements, and limited water sources.

Introduction.- Real-Time Monitoring and Operational Control of Water Systems.- Part I: Modelling.- Modelling of Drinking Water Networks.- Parameter Estimation.- Nodal Demand Calibration.- Short-Term Demand Forecasting.- Part II: Monitoring.- Leak Monitoring.- Quality Monitoring.- Sensor Placement for Monitoring.- Data Validation and Reconstruction.-  Fault Diagnosis.- Part III: Operational Control.- Model Predictive Control of Transport Networks.- Model Predictive Control of Distribution Networks.- Stochastic Model Predictive Control.- Fault-Tolerance and Health-Aware Strategies.- Partitioning the Network into Subsystems.- Decentralized Model Predictive Control.- Part IV: Future Trends.- Data-Driven Evolutionary Game-Based Control.- Coordination between Regional and Metropolitan Networks.- Big Data Analytics and Knowledge Discovery.




Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.