Der Artikel ist weiterhin als ^^OTHERCONDITION^^ verfügbar.
Autor: Claudia Bucur
ISBN-13: 9783319287386
Einband: Book
Seiten: 155
Gewicht: 286 g
Format: 233x154x15 mm
Sprache: Englisch

Nonlocal Diffusion and Applications

20, Lecture Notes of the Unione Matematica Italiana
Geben Sie Ihre Bewertung ab!  
Wir verlosen jeden Monat unter allen freigegebenen Rezensionen
3 Gutscheine im Wert von 20 Euro. Teilnahmebedingungen
Working in the fractional Laplace framework, this book provides models and theorems related to nonlocal diffusion phenomena. In addition to a simple probabilistic interpretation, some applications to water waves, crystal dislocations, nonlocal phase transitions, nonlocal minimal surfaces and Schrödinger equations are given. Furthermore, an example of an s-harmonic function, its harmonic extension and some insight into a fractional version of a classical conjecture due to De Giorgi are presented. Although the aim is primarily to gather some introductory material concerning applications of the fractional Laplacian, some of the proofs and results are new. The work is entirely self-contained, and readers who wish to pursue related subjects of interest are invited to consult the rich bibliography for guidance.
Gives a rich introduction to the fractional Laplacian and its applications
Introduction.- 1 A probabilistic motivation.-1.1 The random walk with arbitrarily long jumps.- 1.2 A payoff model.-2 An introduction to the fractional Laplacian.-2.1 Preliminary notions.- 2.2 Fractional Sobolev Inequality and Generalized Coarea Formula.- 2.3 Maximum Principle and Harnack Inequality.- 2.4 An s-harmonic function.- 2.5 All functions are locally s-harmonic up to a small error.- 2.6 A function with constant fractional Laplacian on the ball.- 3 Extension problems.- 3.1 Water wave model.- 3.2 Crystal dislocation.- 3.3 An approach to the extension problem via the Fourier transform.- 4 Nonlocal phase transitions.- 4.1 The fractional Allen-Cahn equation.- 4.2 A nonlocal version of a conjecture by De Giorgi.- 5 Nonlocal minimal surfaces.- 5.1 Graphs and s-minimal surfaces.- 5.2 Non-existence of singular cones in dimension 2 5.3 Boundary regularity.- 6 A nonlocal nonlinear stationary Schrödinger type equation.- 6.1 From the nonlocal Uncertainty Principle to a fractional weighted inequality.- Alternative proofs of some results.- A.1 Another proof of Theorem A.2 Another proof of Lemma 2.3.- References.

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.



Autor: Claudia Bucur
ISBN-13 :: 9783319287386
ISBN: 3319287389
Erscheinungsjahr: 18.04.2016
Verlag: Springer-Verlag GmbH
Gewicht: 286g
Seiten: 155
Sprache: Englisch
Sonstiges: Taschenbuch, 233x154x15 mm, Bibliographie