Modeling of Carbon Nanotubes, Graphene and their Composites

Modeling of Carbon Nanotubes, Graphene and their Composites
-0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar

Unser bisheriger Preis:ORGPRICE: 111,59 €

Jetzt 96,28 €* eBook

Artikel-Nr:
9783319012018
Veröffentl:
2013
Einband:
eBook
Seiten:
332
Autor:
Konstantinos I. Tserpes
Serie:
188, Springer Series in Materials Science
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes and their applications. In this process, modeling is a very attractive investigation tool due to the difficulties in manufacturing and testing of nanomaterials. Continuum modeling offers significant advantages over atomistic modeling. Furthermore, the lack of accuracy in continuum methods can be overtaken by incorporating input data either from experiments or atomistic methods. This book reviews the recent progress in continuum modeling of carbon nanotubes and their composites. The advantages and disadvantages of continuum methods over atomistic methods are comprehensively discussed. Numerical models, mainly based on the finite element method, as well as analytical models are presented in a comparative way starting from the simulation of isolated pristine and defected nanotubes and proceeding to nanotube-based composites. The ability of continuum methods to bridge different scales is emphasized. Recommendations for future research are given by focusing on what still continuum methods have to learn from the nano-scale. The scope of the book is to provide current knowledge aiming to support researchers entering the scientific area of carbon nanotubes to choose the appropriate modeling tool for accomplishing their study and place their efforts to further improve continuum methods.
A large part of the research currently being conducted in the fields of materials science and engineering mechanics is devoted to carbon nanotubes and their applications. In this process, modeling is a very attractive investigation tool due to the difficulties in manufacturing and testing of nanomaterials. Continuum modeling offers significant advantages over atomistic modeling. Furthermore, the lack of accuracy in continuum methods can be overtaken by incorporating input data either from experiments or atomistic methods. This book reviews the recent progress in continuum modeling of carbon nanotubes and their composites. The advantages and disadvantages of continuum methods over atomistic methods are comprehensively discussed. Numerical models, mainly based on the finite element method, as well as analytical models are presented in a comparative way starting from the simulation of isolated pristine and defected nanotubes and proceeding to nanotube-based composites. The ability of continuum methods to bridge different scales is emphasized. Recommendations for future research are given by focusing on what still continuum methods have to learn from the nano-scale. The scope of the book is to provide current knowledge aiming to support researchers entering the scientific area of carbon nanotubes to choose the appropriate modeling tool for accomplishing their study and place their efforts to further improve continuum methods.
Preface.- 1 Improved mechanical performance of CNTs and CNT fibres in nanocomposites through inter-wall and inter-tube coupling.- 2 A Review on the Application of Nonlocal Elastic Models in Modeling of Carbon Nanotubes and Graphenes.- 3 A heterogeneous discrete approach of interfacial effects on multi-scale modelling of carbon nanotube and graphene based composites.- 4 Effect of Covalent Functionalization on Young’s Modulus of a Single-Wall Carbon Nanotube.- 5 Multiscale Modeling of Multifunctional Fuzzy Fibers based on Multi-Walled Carbon Nanotubes.- 6 Geometry-property relation in corrugated nanocarbon cylinders.- 7 Prediction of Mechanical Properties of CNT Based Composites Using Multi-scale Modeling and Stochastic Analysis.- 8 Molecular Dynamics Simulation and Continuum Shell Model for Buckling Analysis of Carbon Nanotubes.- 9 Influence of Bond Kinematics on the Rupture of Non-Chiral CNTs under Stretching-Twisting.- 10 Finite Element Modeling of the Tensile Behavior of Carbon Nanotubes, Graphene and Their Composites.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.