Control Systems with Input and Output Constraints

Control Systems with Input and Output Constraints
Advanced textbooks in control and signal processing
Sofort lieferbar | Lieferzeit: Sofort lieferbar I

85,58 €*

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9781852333874
Veröffentl:
2003
Erscheinungsdatum:
01.07.2003
Seiten:
499
Autor:
Adolf Hermann Glattfelder
Gewicht:
785 g
Format:
235x155x28 mm
Serie:
Advanced Textbooks in Control and Signal Processing
Sprache:
Englisch
Beschreibung:

From the reviews: [The authors] "...have succeeded in their intention to produce the first reference in the area that will be available for a broad audience. I think that this book will be a standard reference for a long time." Control Engineering Practice

Control Systems with Input and Output Constraints will sell because it teaches its reader to overcome some serious restrictions in the most
widely used form of industrial control - PID. It draws upon the practical
experience of experienced engineers in real plants and teaches the student
a scientific structure with which to apply it.
1 Introduction.- 1.1 A Typical Case.- 1.2 A Historical Perspective.- 1.3 The Control Problem.- 1.3.1 Control Systems with Input Constraints.- 1.3.2 Control Systems with Mode Switch.- 1.3.3 Control Systems with Output Constraints.- 1.4 Expected Control Performance.- 1.5 Methods.- 1.5.1 Optimal Control.- 1.5.2 Numerical Optimization: Model Predictive Control.- 1.5.3 The Intuitive Approach.- 1.6 Contents.- 1.7 Objectives.- I Standard Techniques.- 2 PI Control with Input Saturations.- 2.1 John's Case.- 2.1.1 Modeling.- 2.1.2 The Mechanical Governor.- 2.1.3 The Electronic Regulator.- 2.1.4 Summary.- 2.2 Problem Statement and Test Cases.- 2.3 The Reset Windup Effect.- 2.4 Antiwindup Structures.- 2.4.1 The Generic Antiwindup Feedback Structure.- 2.4.2 Control Conditioning.- 2.4.3 Reference Conditioning.- 2.4.4 Self-conditioning.- 2.4.5 Summary.- 2.5 Transient Responses for the Test Cases.- 2.5.1 The Effect of Antiwindup Feedback Structure.- 2.5.2 The Effect of Controller Tuning.- 2.5.3 Overshoot Analysis.- 2.5.4 The Effect of the Relative Pole Shift ÜT.- 2.5.5 Summary.- 2.6 Stability properties.- 2.6.1 Motivation.- 2.6.2 Methods.- 2.6.3 A Generic Result.- 2.6.4 Stability Analysis of the Test Cases.- 2.6.5 Estimating the Range of Attraction.- 2.6.6 Summary.- 2.7 Relations to Optimal Control.- 2.7.1 Motivation.- 2.7.2 The Exact Solution.- 2.7.3 Ongoing Control.- 2.8 Case Study: Batch Reactor Temperature Control.- 2.8.1 The process and the main control task.- 2.8.2 The Plant Model.- 2.8.3 Parameter Values.- 2.8.4 The Controller.- 2.8.5 The Design Program.- 2.8.6 Typical Resuhs.- 2.9 Summary.- 3 PI Control with Output Constraints.- 3.1 Arthur's Case.- 3.1.1 Extending the Plant Model.- 3.1.2 Arthur's Solution.- 3.1.3 An Advanced Solution.- 3.2 The Basic Concept.- 3.2.1 Problem Statement.- 3.2.2 Typical Controller Structures.- 3.3 The Benchmark Test.- 3.4 Structures for Output Constraint Control.- 3.4.1 The Nonhnear-Additive Concept.- 3.4.2 The Selector Concept.- 3.4.3 The Cascade-Limiter Concept.- 3.5 The Generic Structure.- 3.5.1 A First Version, for Direct Implementation.- 3.5.2 A Second Version, for Stability Analysis.- 3.6 Stability Analysis.- 3.6.1 The Cascade-Limiter Form.- 3.6.2 The Nonhnear-Additive and Selectors Forms.- 3.7 Stability Properties of the Test Case.- 3.8 Relations to Minimum Time Control.- 3.9 Case Study (continued): Batch Reactor Temperature Control..- 3.9.1 The Process and the Main Control Task.- 3.9.2 The Plant Model.- 3.9.3 Parameter Values.- 3.9.4 The Controller.- 3.9.5 The Design Program.- 3.9.6 Typical Results.- 3.10 Summary.- 4 PI Control with Input and Output Constraints.- 4.1 Problem Statement.- 4.1.1 The Plant Model.- 4.1.2 The Basic Control Idea.- 4.2 Benchmark System.- 4.3 Structures and Transient Responses.- 4.3.1 Form A: Sequential Max-Min-Selection.- 4.3.2 Form B: Parallel Selection.- 4.3.3 Form C: "Lowest Wins".- 4.3.4 Form D: Sequential Nonhnear Additive.- 4.3.5 Form E: Cascade Limiter.- 4.4 Performance Analysis.- 4.4.1 Introduction.- 4.4.2 Applying Open Loop Control Sequences u(t).- 4.4.3 Generating u(t) by Proportional Feedback and Selection.- 4.4.4 Comparison.- 4.4.5 Adding Integral Action with Antiwindup Feedback.- 4.4.6 Back to the Benchmark.- 4.5 Stability Analysis.- 4.5.1 The Multivariable Circle Criterion Approach.- 4.5.2 An illustrative example.- 4.5.3 The Phase Plane Partitions Approach.- 4.5.4 A Modified Approach.- 4.5.5 A Fourth Approach to Design for Stability.- 4.5.6 Summary and Generalization.- 4.6 Case Study: Elevator Positioning Control.- 4.6.1 Plant Description and Data.- 4.6.2 Mathematical model.- 4.6.3 Suggestions for the Control System Design and Analysis.- 4.7 Summary.- 5 Further Topics on PI (aw) Control.- 5.1 PI Control with Actuator Slew and Stroke Constraints.- 5.1.1 Motivation.- 5.1.2 Actuator Modeling.- 5.1.3 Control Structures and Transient Response.- 5.1.4 An Approximation.- 5.1.5 Stability Analysis.- 5.1.6 An Implementation Alternative.- 5.2 Pl(aw) Control with Derivative Action.- 5.2.1 Introduction.- 5.2.2 The Benchmark.- 5.2.3 Transient Response.- 5.2.4 Some Solutions.- 5.2.5 Stability Analysis.- 5.2.6 Summary.- 5.3 PI(aw) Control with Measurement Noise.- 5.3.1 Introduction.- 5.3.2 Louis' Problem.- 5.3.3 The High-Frequency Disturbance Model.- 5.3.4 PI(aw) Control.- 5.3.5 PI(aw) Control with Derivative Action.- 5.3.6 PI(aw)-P cascade control.- 5.3.7 Some Solutions.- 5.3.8 Conclusion.- II Advanced Techniques.- 6 Generalized Antiwindup.- 6.1 Introduction.- 6.2 A Motivating Example: Peter's Case.- 6.2.1 The Control Loop.- 6.2.2 Transient Responses.- 6.2.3 Peter's Analysis.- 6.3 Problem Statement.- 6.3.1 The Plant.- 6.3.2 Controller structures.- 6.3.3 Controller Parameters.- 6.3.4 Test Sequence.- 6.3.5 Saturation Limits.- 6.3.6 Antiwindup Feedback.- 6.4 Nonlinear Stability Analysis.- 6.4.1 The P+ Case.- 6.4.2 Stability Charts.- 6.4.3 The I(aw)-P+ Case.- 6.4.4 Another Approach to the Graphic Stability Test.- 6.5 Transient Analysis.- 6.6 Design Methods: An Overview.- 6.7 Design by De-tuning ?.- 6.8 The "Nested Loops" Method.- 6.8.1 Transient Response.- 6.8.2 Stability Properties.- 6.8.3 Checking the Design Procedure.- 6.9 First-order Dynamic Antiwindup Feedback.- 6.9.1 The Design Procedure.- 6.9.2 Stability Analysis.- 6.9.3 Checking Peter's Method.- 6.10 Trajectory Generators with Antiwindup Feedback.- 6.10.1 The Design Procedure.- 6.10.2 Stability Properties.- 6.10.3 Checking the Transient Response.- 6.11 The "Continued States" Concept.- 6.12 The Group of "Add-on Output Constraints".- 6.13 The Cascade Limiter Method.- 6.13.1 Problem Specification.- 6.13.2 The Design Procedure.- 6.13.3 Transient Response.- 6.13.4 Stability Analysis.- 6.14 Selection for Approach Speed.- 6.14.1 The Design Procedure.- 6.14.2 The Second-order Case G(s) = l/(sT)2.- 6.14.3 The Third-order Case G(s) = l/(sT)3.- 6.15 Selection for Lower-bandwidth R1-Control.- 6.15.1 The Design Procedure.- 6.15.2 Stability Properties.- 6.15.3 Transient Response.- 6.15.4 Checking the design procedure.- 6.16 Links to Model Predictive Control.- 6.16.1 Introduction.- 6.16.2 The Benchmarks.- 6.16.3 Classic Model Predictive Control.- 6.16.4 Exphcit Model Predictive Control.- 6.16.5 Comparison with Previous Design Methods.- 6.17 Summary and Outlook.- 7 Generalized Override Control.- 7.1 Introduction.- 7.2 Systems with Dominant First-order Plants.- 7.2.1 Actuation on the Inflow.- 7.2.2 Actuation on the Outflow: Direct vs. Reverse Control..- 7.2.3 Main Control on the Inflow and Overrides on the Outflow.- 7.2.4 Output Limitation with N2 > N1.- 7.3 Systems with Dominant Higher-order Plants.- 7.3.1 Open Integrator Chain Plants.- 7.3.2 Output Constraint Control on a Flexible Transmission..- 7.4 Load Gradient Control.- 7.4.1 Henry's Case.- 7.4.2 Modeling.- 7.4.3 Controller Structures and Transient Response.- 7.4.4 Stability properties.- 7.4.5 Some Suggestions for Case Studies.- 7.5 Override Action on the Reference Input.- 7.5.1 Introduction.- 7.5.2 The Benchmark.- 7.5.3 The Design Targets.- 7.5.4 Form A: Nonlinear y2-Feedback.- 7.5.5 Form B: Override Structure with P Controllers.- 7.5.6 Form C: Override Control with Integral Action.- 7.5.7 Summary.- 7.6 A Compromise Between y1- and y2-Control.- 7.7 Links to Model Predictive Control.- 7.7.1 Introduction.- 7.7.2 Case ii: The Double-integrator Plant.- 7.7.3 Case iii: The Triple-integrator Plant.- 7.7.4 Conclusions.- 7.8 Summary.- 8 Multivariable Control with Constraints.- 8.1 Introduction.- 8.2 An Overview.- 8.2.1 Multiple Overrides.- 8.2.2 Multiple Actuators of the Same Type.- 8.2.3 Sequentially Acting Control Loops.- 8.2.4 Parallel-acting Control Loops.- 8.2.5 The General Multi-input Multi-output Case.- 8.3 Parallel Actuators.- 8.3.1 Structure.- 8.3.2 Transient Response and Stability Analysis.- 8.4 Sequenced Control Loops.- 8.4.1 Structure.- 8.4.2 Transient Response.- 8.4.3 Stability Analysis.- 8.5 Parallel Control Loops.- 8.5.1 The Plant Model.- 8.5.2 State Feedback Control.- 8.5.3 Additional Integral Action in the Local Controllers.- 8.5.4 Stability Analysis.- 8.6 Interacting Control Loops.- 8.6.1 The Plant.- 8.6.2 Local P Controllers.- 8.6.3 Decoupling Control.- 8.6.4 A Different Control Concept.- 8.6.5 Transient Response.- 8.7 Summary.- 9 Conclusion.- 9.1 Approach.- 9.2 Achievements.- 9.3 Limitations.- 9.4 Some Further Research Areas.- A Nonlinear Stability Tests.- A.l The Canonical Loop Structure and Stability of Motion.- A.2 Final Steady State and the Sector Criteria.- A.3 Limit Cycles and the Describing Function Method.- A.4 Summary.- References.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.