Workflows for e-Science

Workflows for e-Science
-0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.
Scientific Workflows for Grids
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar

Unser bisheriger Preis:ORGPRICE: 111,34 €

Jetzt 96,28 €* eBook

Artikel-Nr:
9781846287572
Veröffentl:
2007
Einband:
eBook
Seiten:
526
Autor:
Ian J. Taylor
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

This collection of articles on ‘Work?ows for e-Science’ is very timely and - portant. Increasingly, to attack the next generation of scienti?c problems, multidisciplinary and distributed teams of scientists need to collaborate to make progress on these new ‘Grand Challenges’. Scientists now need to access and exploit computational resources and databases that are geographically distributed through theuseof high speed networks. ‘Virtual Organizations’ or ‘VOs’ must be established that span multiple administrative domains and/or institutions and which can provide appropriate authentication and author- ation services and access controls to collaborating members. Some of these VOsmayonlyhavea?eetingexistencebutthelifetimeofothersmayrun into many years. The Grid community is attempting to develop both sta- ards and middleware to enable both scientists and industry to build such VOs routinely and robustly. This, of course, has been the goal of research in distributed computing for many years; but now these technologies come with a new twist service orie- ation. By specifying resources in terms of a service description, rather than allowing direct access to the resources, the IT industry believes that such an approach results in the construction of more robust distributed systems. The industry has therefore united around web services as the standard technology toimplementsuchserviceorientedarchitecturesandtoensureinteroperability between di?erent vendor systems.
This collection of articles on 'Work?ows for e-Science' is very timely and - portant. Increasingly, to attack the next generation of scienti?c problems, multidisciplinary and distributed teams of scientists need to collaborate to make progress on these new 'Grand Challenges'. Scientists now need to access and exploit computational resources and databases that are geographically distributed through theuseof high speed networks. 'Virtual Organizations' or 'VOs' must be established that span multiple administrative domains and/or institutions and which can provide appropriate authentication and author- ation services and access controls to collaborating members. Some of these VOsmayonlyhavea?eetingexistencebutthelifetimeofothersmayrun into many years. The Grid community is attempting to develop both sta- ards and middleware to enable both scientists and industry to build such VOs routinely and robustly. This, of course, has been the goal of research in distributed computing for many years; but now these technologies come with a new twist service orie- ation. By specifying resources in terms of a service description, rather than allowing direct access to the resources, the IT industry believes that such an approach results in the construction of more robust distributed systems. The industry has therefore united around web services as the standard technology toimplementsuchserviceorientedarchitecturesandtoensureinteroperability between di?erent vendor systems.
This collection of articles on ‘Work?ows for e-Science’ is very timely and - portant. Increasingly, to attack the next generation of scienti?c problems, multidisciplinary and distributed teams of scientists need to collaborate to make progress on these new ‘Grand Challenges’. Scientists now need to access and exploit computational resources and databases that are geographically distributed through theuseof high speed networks. ‘Virtual Organizations’ or ‘VOs’ must be established that span multiple administrative domains and/or institutions and which can provide appropriate authentication and author- ation services and access controls to collaborating members. Some of these VOsmayonlyhavea?eetingexistencebutthelifetimeofothersmayrun into many years. The Grid community is attempting to develop both sta- ards and middleware to enable both scientists and industry to build such VOs routinely and robustly. This, of course, has been the goal of research in distributed computing for many years; but now these technologies come with a new twist service orie- ation. By specifying resources in terms of a service description, rather than allowing direct access to the resources, the IT industry believes that such an approach results in the construction of more robust distributed systems. The industry has therefore united around web services as the standard technology toimplementsuchserviceorientedarchitecturesandtoensureinteroperability between di?erent vendor systems.
Scientific versus Business Workflows.- Scientific versus Business Workflows.- Application and User Perspective.- Generating Complex Astronomy Workflows.- A Case Study on the Use of Workflow Technologies for Scientific Analysis: Gravitational Wave Data Analysis.- Workflows in Pulsar Astronomy.- Workflow and Biodiversity e-Science.- Ecological Niche Modeling Using the Kepler Workflow System.- Case Studies on the Use of Workflow Technologies for Scientific Analysis: The Biomedical Informatics Research Network and the Telescience Project.- Dynamic, Adaptive Workflows for Mesoscale Meteorology.- SCEC CyberShake Workflows—Automating Probabilistic Seismic Hazard Analysis Calculations.- Workflow Representation and Common Structure.- Control- Versus Data-Driven Workflows.- Component Architectures and Services: From Application Construction to Scientific Workflows.- Petri Nets.- Adapting BPEL to Scientific Workflows.- Protocol-Based Integration Using SSDL and ?-Calculus.- Workflow Composition: Semantic Representations for Flexible Automation.- Virtual Data Language: A Typed Workflow Notation for Diversely Structured Scientific Data.- Frameworks and Tools: Workflow Generation, Refinement, and Execution.- Workflow-Level Parametric Study Support by MOTEUR and the P-GRADE Portal.- Taverna/myGrid: Aligning a Workflow System with the Life Sciences Community.- The Triana Workflow Environment: Architecture and Applications.- Java CoG Kit Workflow.- Workflow Management in Condor.- Pegasus: Mapping Large-Scale Workflows to Distributed Resources.- ICENI.- Expressing Workflow in the Cactus Framework.- Sedna: A BPEL-Based Environment for Visual Scientific Workflow Modeling.- ASKALON: A Development and Grid Computing Environment for Scientific Workflows.- Future Requirements.- Looking intothe Future of Workflows: The Challenges Ahead.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.