Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging

Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging
-0 %
Volume I Materials Physics - Materials Mechanics. Volume II Physical Design - Reliability and Packaging
 Paperback~2:BC
Print on Demand | Lieferzeit: Print on Demand - Lieferbar innerhalb von 3-5 Werktagen I

Unser bisheriger Preis:ORGPRICE: 534,99 €

Jetzt 534,94 €* Paperback~2:BC

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9781489978851
Veröffentl:
2016
Einband:
Paperback~2:BC
Erscheinungsdatum:
23.08.2016
Seiten:
1528
Autor:
Ephraim Suhir
Gewicht:
2819 g
Format:
254x178x82 mm
Sprache:
Englisch
Beschreibung:

Dr. Ephraim Suhir is Distinguished Member of Technical Staff (retired), Basic Research, Physical Sciences and Engineering Research Division, Bell Labs, Murray Hill, NJ. He is currently on the faculty of the Electrical Engineering Department, University of California, Santa Cruz, CA and the Department of Mechanical Engineering, University of Maryland, College Park, MD. Dr. Suhir is Fellow of the American Physical Society (APS), the Institute of Electrical and Electronics Engineers (IEEE), the American Society of Mechanical Engineers (ASME), and the Society of Plastics Engineers (SPE). He is co-founder (with Dr. Peter Engel) of the ASME Journal of Electronic Packaging and served as its Technical Editor for eight years (1993-2001).   He has received numerous distinguished service and professional awards, including 2004 ASME Worcester Read Warner Medal for outstanding contributions to the permanent literature of engineering; 2001 IMAPS John A. Wagnon Technical Achievement Award for outstanding contributions to the technical knowledge of the microelectronics, optoelectronics, and packaging industry; 2000 IEEE-CPMT Outstanding Sustained Technical Contribution Award for outstanding, sustained and continuing contributions to the technologies in fields encompassed by the CPMT Society; 2000 SPE International Engineering/Technology (Fred O. Conley) Award for outstanding pioneering and continuing contributions to plastics engineering; and 1999 ASME and Pi-Tau-Sigma Charles Russ Richards Memorial Award for outstanding contributions to mechanical engineering.
Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging is the first comprehensive reference to collect and present the most, up-to-date, in-depth, practical and easy-to-use information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials, assemblies, structures and systems. The chapters in these two volumes contain summaries of the state-of-the-art and present new information on recently developed important methods or devices. Furthermore, practical recommendations are offered on how to successfully apply current knowledge and recently developed technology to design, manufacture and operate viable, reliable and cost-effective electronic components or photonic devices. The emphasis is on the science and engineering of electronic and photonic packaging, on physical design problems, challenges and solutions.Volume I focuses on physics and mechanics of micro- and opto-electronic structures and systems, i.e., on the science underpinnings of engineering methods and approaches used in microelectronics and photonics. Volume II deals with various practical aspects of reliability and packaging of micro- and opto-electronic systems. Internationally recognized experts and world leaders in particular areas of this branch of applied science and engineering contributed to the book.
This handbook is the first comprehensive reference to collect and present up-to-date, practical and easy-to-use information on the physics, mechanics, reliability and packaging of micro- and opto-electronic materials.
Volume I: Physics, Mechanics and Design.- Materials Physics.- Polymer Materials Characterization, Modeling and Application.- Thermo-Optic Effects in Polymer Bragg Gratings.- Adhesives for Micro- and Opto-Electronics Applications: Chemistry, Reliability, Mechanics.- Multi-stages Peel Tests and Evaluation of Interfacial Adhesion Strength Between Brittle Thin Film and Polymer Substrate.- Adhesion and Fracture of Interfaces in Microelectronic Packaging.- The Research Status of Isotropic Electrically Conductive Adhesives.- Electrically Conductive Adhesives.- Adhesive Bonding of Passive Optical Components.- Photorefractive Materials and Devices for Passive Components in WDM Systems.- Advanced Substrate Materials for Power Electronics.- Carbon nanotube Based Interconnect Technology: Opportunities and Challenges.- Materials Mechanics.- Thermal Stress Modeling in Micro- and Opto-Electronics: Review and Extension.- Area Array Technology for High Reliability Applications.- How to make an Opto-Electronic Device into a Product: Role of Accelerated Life Testing.- High-speed Tensile Testing of Optical Fibers - New Understanding for Reliability Prediction.- Uncertainty Modeling in Fiber-Optic Packages.- Multiphysics modelling and optimisation technology for design and reliability of microstystems: Review.- Application of Moire Interferometry to Strain Analysis of PCB Deformations at Low Temperatures.- Characterization of Stresses and Strains in Microelectronics and Photonics Devices Using Photomechanics Methods.- Analysis of Reliability of IC Packages Using Fracture Mechanics Approach.- A Methodology for an Integrated (Electrical/Mechanical) Design of PWBA.- Nonlinear Dynamic Response of Micro-Electronic Structures to Shock Loading.- Physical Design.- Wafer Level Underfill.- The Wirebonded Interconnect: A Mainstay for Electronics.- Metallurgical Interconnections for Extreme High and Low Temperature Environments.- Accelerated Testing for Optoelectronics.- Passive-alignment of Optical Fiber in a V-groove with Low Viscosity Epoxy Flow.- Volume II: Reliability and Packaging.- Fundamental Concepts of Reliability and Stress Testing.- Micro-Deformation Analysis and Reliability Estimation of Micro-Components by Means of NanoDAC Technique.- Packaging and Reliability for Foundry-Fabricated MEMS.- Reliability in Mobile Electronic Productions.- Dynamic of the Physical Reliability of Photonic Materials.- Durability of Packaged Nanostructures: Laser Diode Packages, A Case Study.- Reliability of VCSEL Package Coupling to Optoelectronic Circuit Boards.- Fatigue Life Assessment for Lead-Free Solder Joints.- Reliability of High Density Lead-Free Assemblies Under Shock-loading Conditions.- Design-for-Reliability Methodology for Modeling Lead-Free Solder Materials and Solder Joint Reliability Performance.- Die Attach Quality Testing by Structure Function Evaluation.- The Mechanical Behavior of Flip Chip Packages Under Thermal Loading.- Li Li Stress Analysis on Processed Silicon Wafer and Packaged Micro-device.- Metallurgy, Processes and Reliability of Lead-Free Solder Inconnects.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.