VLSI for Artificial Intelligence and Neural Networks
- 0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.

VLSI for Artificial Intelligence and Neural Networks

 PDF
Sofort lieferbar | Lieferzeit:3-5 Tage I

Unser bisheriger Preis:ORGPRICE: 59,30 €

Jetzt 59,29 €*

ISBN-13:
9781461537526
Einband:
PDF
Seiten:
412
Autor:
Jose G. Delgado-Frias
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

This book is an edited selection of the papers presented at the International Workshop on VLSI for Artifidal Intelligence and Neural Networks which was held at the University of Oxford in September 1990. Our thanks go to all the contributors and especially to the programme committee for all their hard work. Thanks are also due to the ACM-SIGARCH, the IEEE Computer Society, and the lEE for publicizing the event and to the University of Oxford and SUNY-Binghamton for their active support. We are particularly grateful to Anna Morris, Maureen Doherty and Laura Duffy for coping with the administrative problems. Jose Delgado-Frias Will Moore April 1991 vii PROLOGUE Artificial intelligence and neural network algorithms/computing have increased in complexity as well as in the number of applications. This in tum has posed a tremendous need for a larger computational power than can be provided by conventional scalar processors which are oriented towards numeric and data manipulations. Due to the artificial intelligence requirements (symbolic manipulation, knowledge representation, non-deterministic computations and dynamic resource allocation) and neural network computing approach (non-programming and learning), a different set of constraints and demands are imposed on the computer architectures for these applications.
This book is an edited selection of the papers presented at the International Workshop on VLSI for Artifidal Intelligence and Neural Networks which was held at the University of Oxford in September 1990. Our thanks go to all the contributors and especially to the programme committee for all their hard work. Thanks are also due to the ACM-SIGARCH, the IEEE Computer Society, and the lEE for publicizing the event and to the University of Oxford and SUNY-Binghamton for their active support. We are particularly grateful to Anna Morris, Maureen Doherty and Laura Duffy for coping with the administrative problems. Jose Delgado-Frias Will Moore April 1991 vii PROLOGUE Artificial intelligence and neural network algorithms/computing have increased in complexity as well as in the number of applications. This in tum has posed a tremendous need for a larger computational power than can be provided by conventional scalar processors which are oriented towards numeric and data manipulations. Due to the artificial intelligence requirements (symbolic manipulation, knowledge representation, non-deterministic computations and dynamic resource allocation) and neural network computing approach (non-programming and learning), a different set of constraints and demands are imposed on the computer architectures for these applications.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.