Regulation of Gene Expression in Animal Viruses

Regulation of Gene Expression in Animal Viruses
-0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.
 PDF
Sofort lieferbar | Lieferzeit: Sofort lieferbar

Unser bisheriger Preis:ORGPRICE: 56,28 €

Jetzt 56,27 €* PDF

Artikel-Nr:
9781461529286
Veröffentl:
2012
Einband:
PDF
Seiten:
325
Autor:
Luis Carrasco
Serie:
NATO Science Series A:
eBook Typ:
PDF
eBook Format:
PDF
Kopierschutz:
Adobe DRM [Hard-DRM]
Sprache:
Englisch
Beschreibung:

Viruses, being obligatory parasites of their host cells, rely on a vast supply of cellular components for their replication, regardless of whether infection leads to cell death or to the state of persistence. Animal viruses are providing scientists with relatively simple models to study the molecular biology of genome replication and gene expression. Whereas viruses use, in general, pathways of macromolecular biosynthesis common to the host cell, they have a cunning ability to adopt unusual mechanisms of gene expression and gene replication, provided these special pathways offer an advantage in competition for cellular resources. Any study of viral gene expression and replication is likely to lead also to new insights in cellular metabolism. The discoveries of cis-acting regulatory elements in transcription, the phenomenon of splicing of pre- mRNA, and cap-dependent and cap-independent initiation of translation may be cited as examples. In addition, animal virus genomes contain elements and encode proteins that are very useful for the design of vectors for gene cloning and expression in mammalian cells. Apart from the basic interest in their biology, viruses have gained notoriety, of course, because they are pathogens. Human animal viruses may cause diseases ranging from the deadly (AIDS) to the benign (common cold). All studies on animal viruses potentially lead to the development of tools for their control, be it through prevention by immunization or treatment with antiviral drugs. Finally, viruses have yielded invaluable reagents in molecular biology as, for example, the vaccinia virus vector for the expression of foreign genes.
Viruses, being obligatory parasites of their host cells, rely on a vast supply of cellular components for their replication, regardless of whether infection leads to cell death or to the state of persistence. Animal viruses are providing scientists with relatively simple models to study the molecular biology of genome replication and gene expression. Whereas viruses use, in general, pathways of macromolecular biosynthesis common to the host cell, they have a cunning ability to adopt unusual mechanisms of gene expression and gene replication, provided these special pathways offer an advantage in competition for cellular resources. Any study of viral gene expression and replication is likely to lead also to new insights in cellular metabolism. The discoveries of cis-acting regulatory elements in transcription, the phenomenon of splicing of pre- mRNA, and cap-dependent and cap-independent initiation of translation may be cited as examples. In addition, animal virus genomes contain elements and encode proteins that are very useful for the design of vectors for gene cloning and expression in mammalian cells. Apart from the basic interest in their biology, viruses have gained notoriety, of course, because they are pathogens. Human animal viruses may cause diseases ranging from the deadly (AIDS) to the benign (common cold). All studies on animal viruses potentially lead to the development of tools for their control, be it through prevention by immunization or treatment with antiviral drugs. Finally, viruses have yielded invaluable reagents in molecular biology as, for example, the vaccinia virus vector for the expression of foreign genes.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.