Dynamics and Control of Mechanical Systems in Offshore Engineering

Dynamics and Control of Mechanical Systems in Offshore Engineering
-0 %
 HC runder Rücken kaschiert
Sofort lieferbar | Lieferzeit: Sofort lieferbar I

Unser bisheriger Preis:ORGPRICE: 106,99 €

Jetzt 106,98 €* HC runder Rücken kaschiert

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9781447153368
Veröffentl:
2013
Einband:
HC runder Rücken kaschiert
Erscheinungsdatum:
14.10.2013
Seiten:
248
Autor:
Wei He
Gewicht:
541 g
Format:
241x160x19 mm
Serie:
Advances in Industrial Control
Sprache:
Englisch
Beschreibung:

Dr Wei He received his PhD from Department of Electrical & Computer Engineering, the National University of Singapore (NUS), Singapore, in 2011, his M.Eng. and B.Eng. degrees both in automatic control from School of Automation Science and Engineering, South China University of Technology (SCUT), Guangzhou, China, in 2008 and 2006 respectively. He was a Research Fellow at the Department of Electrical & Computer Engineering, and the Centre for Offshore Research & Engineering (CORE), the National University of Singapore (NUS), Singapore, from January 2011 to March 2012. He is currently working as the Associate Professor at School of Automation Engineering and Robotics Institute, University of Electronic Science and Technology of China (UESTC). He is the member of the IEEE and the member of IEEE Control System Society (CSS). He serves as theEditor of Journal of Intelligent & Robotic Systems, Springer. His current research interests include marine cybernetics, intelligent control systems and robotics.

Professor Shuzhi Sam Ge obtained his PhD from Imperial College in 1993. He is a member of the Centre for Offshore Research & Engineering (CORE) and Director of the Social Robotics Lab, Interactive Digital Media Institute, NUS. He has (co)-authored 5 books in robotics and intelligent control, and edited a book on autonomous robots, and over 180 international journal papers. In Scopus index, his total number of citations excluding self citations is 3650, and his H-index is 35. He has experience of managing multi-million dollar projects across University, Research Institute and Industry for successful and smooth delivery, were recognized by the National Technology Award in 1999 for a SMART robotic system, and the Temasek Young Investigator Award in 2002 for Intelligent Control of Unmanned Vehicles.
He is a Fellow of IEEE, IFAC and IET. He served as the Vice President of Technical Activities, 2009-2010, and theVice President for Membership Activities, 2011-2012, IEEE Control Systems Society. He is the Editor-in-Chief of the International Journal of Social Robotics. He has served/been serving as an Associate Editor for a number of flagship journals including IEEE Transactions on Automatic Control, IEEE Transactions on Control Systems Technology, IEEE Transactions on Neural Networks, and Automatica. He serves as an Editor of the Taylor & Francis Automation and Control Engineering Series. He researches in intelligent control and its applications including electromechanical systems, flexible marine riser, subsea installation, HDDs, robotic manipulators, and general nonlinear systems. He also provides technical consultancy to industrial and government agencies.

Dr Bernard Voon Ee How received the Ph.D. and B.Eng. (Hons) degrees, both in electrical and computer engineering (ECE) from the NUS in 2010 and 2005 respectively. He is currently Research Engineer with Keppel Offshore and Marine Technology Center (KOMtech) where he is heading the Control group. He is executive member of the IEEE Oceanic Engineering Society, Singapore Chapter since 2010. He was Research Fellow with the Centre for Offshore Research and Engineering (CORE), Department of Civil Engineering (CE), NUS, 2010. For the entire duration of his PhD candidature at the Department of ECE, he was concurrently employed as a Research Engineer at the CORE, CE, NUS. He was a recipient of the Training Attachment Program funding by the Economic Development Board (EDB) of Singapore under the Oil & Gas and Offshore Engineering Technologies program. He worked 5 months offshore on pipe laying barge DB 60, J. Ray McDermott in Tierra del Fuego, Argentina in 2004.


Professor Yoo Sang Choo is the Lloyd's Register Educational Trust Chair Professor and Director (Research), CORE at National University of Singapore. He is Immediate Past President of The Institute of Marine Engineering Science &Technology (IMarEST) from March 2009. The

Dynamics and Control of Mechanical Systems in Offshore Engineering is a comprehensive treatment of marine mechanical systems (MMS) involved in processes of great importance such as oil drilling and mineral recovery. Ranging from nonlinear dynamic modeling and stability analysis of flexible riser systems, through advanced control design for an installation system with a single rigid payload attached by thrusters, to robust adaptive control for mooring systems, it is an authoritative reference on the dynamics and control of MMS. Readers will gain not only a complete picture of MMS at the system level, but also a better understanding of the technical considerations involved and solutions to problems that commonly arise from dealing with them.

The text provides:

· a complete framework of dynamical analysis and control design for marine mechanical systems;

· new results on the dynamical analysis of riser, mooring and installation systems together with a general modeling method for a class of MMS;

· a general method and strategy for realizing the control objectives of marine systems with guaranteed stability the effectiveness of which is illustrated by extensive numerical simulation; and

· approximation-based control schemes using neural networks for installation of subsea structures with attached thrusters in the presence of time-varying environmental disturbances and parametric uncertainties.

Most of the results presented are analytical with repeatable design algorithms with proven closed-loop stability and performance analysis of the proposed controllers is rigorous and detailed.

Dynamicsand Control of Mechanical Systems in Offshore Engineering is primarily intended for researchers and engineers in the system and control community, but graduate students studying control and marine engineering will also find it a useful resource as will practitioners working on the design, running or maintenance of offshore platforms.

This book covers nonlinear dynamic modeling and stability analysis of flexible riser systems, advanced control design for an installation system with a single rigid payload attached by thrusters, robust adaptive control for mooring systems and other topics.
Gives the reader a complete framework for dynamical analysis and control design of an economically vital class of systems
Preliminaries.- Dynamic Load Positioning.- Coupled Nonlinear Flexible Marine Riser.- Flexible Marine Riser with Vessel Dynamics.- Riser System with a Torque Actuator.- Marine Installation System.- Riser Installation System.- Mooring System.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.