Process Design Strategies for Biomass Conversion Systems

Process Design Strategies for Biomass Conversion Systems
-0 %
Besorgungstitel - wird vorgemerkt | Lieferzeit: Besorgungstitel - Lieferbar innerhalb von 10 Werktagen I

Unser bisheriger Preis:ORGPRICE: 152,50 €

Jetzt 152,48 €*

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9781118699157
Veröffentl:
2016
Erscheinungsdatum:
08.02.2016
Seiten:
384
Autor:
Denny K S Ng
Gewicht:
612 g
Format:
244x170x20 mm
Sprache:
Englisch
Beschreibung:

Denny Ng is a Professor at the Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus.
This book covers recent developments in process systems engineering (PSE) for efficient resource use in biomass conversion systems. It provides an overview of process development in biomass conversion systems with focus on biorefineries involving the production and coproduction of fuels, heating, cooling, and chemicals. The scope includes grassroots and retrofitting applications. In order to reach high levels of processing efficiency, it also covers techniques and applications of natural-resource (mass and energy) conservation. Technical, economic, environmental, and social aspects of biorefineries are discussed and reconciled. The assessment scales vary from unit- to process- and life-cycle or supply chain levels.The chapters are written by leading experts from around the world, and present an integrated set of contributions. Providing a comprehensive, multi-dimensional analysis of various aspects of bioenergy systems, the book is suitable for both academic researchers and energy professionals in industry.
List of Contributors xiiiPreface xviiAcknowledgments xxiPart 1 Process Design Tools for Biomass Conversion Systems 11 Early?-Stage Design and Analysis of Biorefinery Networks 3Peam Cheali, Alberto Quaglia, Carina L. Gargalo, Krist V. Gernaey, Gürkan Sin, and Rafiqul Gani1.1 Introduction 31.2 Framework 51.2.1 Sustainability Analysis 101.2.2 Environmental Impact Assessment 121.3 Application: Early?-Stage Design and Analysis of a Lignocellulosic Biorefinery 151.3.1 Biorefinery Networks and Identification of the Optimal Processing Paths 151.3.2 Sustainability Analysis with Respect to Resource Consumption and Environmental Impact 291.4 Conclusion 34Nomenclature 35References 372 Application of a Hierarchical Approach for the Synthesis of Biorefineries 39Carolina Conde?-Mejía, Arturo Jiménez?-Gutiérrez, and Mahmoud M. El?-Halwagi2.1 Introduction 392.2 Problem Statement 412.3 General Methodology 422.4 Simulation of Flowsheets 442.5 Results and Discussion 492.5.1 Level 1 492.5.2 Level 2 512.5.3 Level 3 512.5.4 Level 4 532.5.5 Level 5 552.5.6 Level 6 562.6 Conclusions 57References 573 A Systematic Approach for Synthesis of an Integrated Palm Oil?-Based Biorefinery 63Rex T. L. Ng and Denny K. S. Ng3.1 Introduction 633.2 Problem Statement 663.3 Problem Formulation 673.4 Case Study 703.5 Conclusions 75References 754 Design Strategies for Integration of Biorefinery Concepts at Existing Industrial Process Sites: Case Study of a Biorefinery Producing Ethylene from Lignocellulosic Feedstock as an Intermediate Platform for a Chemical Cluster 77Roman Hackl and Simon Harvey4.1 Introduction 774.1.1 Biorefinery Concepts 774.1.2 Advantages of Co?]locating Biorefinery Operations at an Industrial Cluster Site 794.1.3 Ethylene Production from Biomass Feedstock 794.1.4 Design Strategy 824.2 Methodology 844.2.1 Process Simulation 854.2.2 Performance Indicator for Heat Integration Opportunities 884.3 Results 904.3.1 Process Simulation 904.3.2 Integration of Separate Ethanol and Ethylene Production Processes 904.3.3 Material and Heat Integration of the Two Processes 924.3.4 Integration Opportunities with the Existing Chemical Cluster 934.3.5 Performance Indicator for Heat Integration Opportunities 964.4 Conclusions and Discussion 96Acknowledgements 97Appendix 98Nomenclature 100References 1005 Synthesis of Biomass?-Based Tri?-generation Systems with Variations in Biomass Supply and Energy Demand 103Viknesh Andiappan, Denny K. S. Ng, and Santanu Bandyopadhyay5.1 Introduction 1035.2 Problem Statement 1065.3 Multi?]period Optimization Formulation 1075.3.1 Material Balance 1085.3.2 Energy Balance 1095.3.3 Economic Analysis 1105.4 Case Study 1125.5 Analysis of the Optimization Results 1225.6 Conclusion and Future Work 123Appendix A 124Nomenclature 128References 129Part 2 Regional Biomass Supply Chains and Risk Management 1336 Large?-Scale Cultivation of Microalgae for Fuel 135Christina E. Canter, Luis F. Razon, and Paul Blowers6.1 Introduction 1356.2 Cultivation 1376.2.1 Organisms for Growth 1376.2.2 Selection of a Species for Growth 1386.2.3 Types of Growth Systems 1396.2.4 Nutrients, Water, and Carbon Dioxide for Growth 1426.2.5 Large?]Scale Commercial Microalgae Growth 1436.3 Harvesting and Dewatering 1446.3.1 Separation Characteristics of Various Species 1446.3.2 Gravity Sedimentation 1446.3.3 Flocculation 1446.3.4 Dissolved Air Flotation 1456.3.5 Centrifugation 1456.3.6 Filtration 1466.3.7 Electrocoagulation 1466.4 Conversion to Products 1466.4.1 Utilization of the Lipid Fraction (Biodiesel) 1466.4.2 Utilization of the Carbohydrate Fraction (Bioethanol and Biogas) 1516.4.3 Utilization of the Protein Fraction (Nitrogenous Compounds) 1536.4.4 Thermochemical Conversion 1546.5 Conclusions 156Acknowledgments 157References 1577 Optimal Planning of Sustainable Supply Chains for the Production of Ambrox based on Ageratina jocotepecana in Mexico 161Sergio I. Martínez?-Guido, J. Betzabe González?-Campos, Rosa E. Del Río, José M. Ponce?-Ortega, Fabricio Nápoles?-Rivera, and Medardo Serna?-González7.1 Introduction 1617.2 Ambrox Supply Chain 1627.3 Biomass Cultivation 1637.4 Transportation System 1657.5 Ambrox Production 1657.6 Bioethanol Production 1687.7 Supply Chain Optimization Model 1687.8 Case Study 1757.9 Conclusions 179Acknowledgments 179Nomenclature 179References 1818 Inoperability Input-Output Modeling Approach to Risk Analysis in Biomass Supply Chains 183Krista Danielle S. Yu, Kathleen B. Aviso, Mustafa Kamal Abdul Aziz, Noor Azian Morad, Michael Angelo B. Promentilla, Joost R. Santos, and Raymond R. Tan8.1 Introduction 1838.2 Input-Output Model 1868.3 Inoperability Input-Output Modeling 1888.3.1 Inoperability 1898.3.2 Interdependency Matrix 1898.3.3 Perturbation 1898.3.4 Economic Loss 1898.4 Illustrative Example 1908.5 Case Study 1 1938.6 Case Study 2 1958.7 Conclusions 2038.8 Further Reading 204Appendix A LINGO Code for Illustrative Example 204Appendix B LINGO Code for Case Study 1 206Appendix C Interval Arithmetic 208Appendix D Analytic Hierarchy Process 208Nomenclature 210References 210Part 3 Other Applications of Biomass Conversion Systems 2159 Process Systems Engineering Tools for Biomass Polygeneration Systems with Carbon Capture and Reuse 217Jhuma Sadhukhan, Kok Siew Ng, and Elias Martinez?-Hernandez9.1 Introduction 2179.2 Production Using Carbon Dioxide 2189.2.1 Chemical Production from Carbon Dioxide 2189.2.2 Material Production from Carbon Dioxide 2199.3 Process Systems Engineering Tools for Carbon Dioxide Capture and Reuse 2209.3.1 Techno?]economic Analysis Tools for Carbon Dioxide Capture and Reuse in Integrated Flowsheet 2209.4 CO2 Pinch Analysis Tool for Carbon Dioxide Capture and Reuse in Integrated Flowsheet 2289.4.1 Overview of the Methodology for CO2 Integration 2319.4.2 Case Study: CO2 Utilisation and Integration in an Algae?]Based Biorefinery 2369.5 Conclusions 244References 24410 Biomass?-Fueled Organic Rankine Cycle?]Based Cogeneration System 247Nishith B. Desai and Santanu Bandyopadhyay10.1 Introduction 24710.2 Working Fluids for ORC 24810.3 Expanders for ORC 25010.4 Existing Biomass?]Fueled ORC?-Based Cogeneration Plants 25110.5 Different Configurations of ORC 25310.5.1 Regeneration Using an Internal Heat Exchanger 25410.5.2 Turbine Bleeding 25410.5.3 Turbine Bleeding and Regeneration 25510.5.4 Thermodynamic Analysis of the ORC with Turbine Bleeding and Regeneration 25510.6 Process Description 25710.7 Illustrative Example 25810.8 Conclusions 260References 26011 Novel Methodologies for Optimal Product Design from Biomass 263Lik Yin Ng, Nishanth G. Chemmangattuvalappil, and Denny K. S. Ng11.1 Introduction 26311.2 CAMD 26611.2.1 Signature?-Based Molecular Design 26711.2.2 Multi?-objective Chemical Product Design with Consideration of Property Prediction Uncertainty 26911.3 Two?-Stage Optimisation Approach for Optimal Product Design from Biomass 27011.3.1 Stage 1: Product Design 27111.3.2 Stage 2: Integrated Biorefinery Design 28011.4 Case Study 28211.4.1 Design of Optimal Product 28211.4.2 Selection of Optimal Conversion Pathway 28811.5 Conclusions 29511.6 Future Opportunities 295Nomenclature 295Appendix 297References 30612 The Role of Process Integration in Reviewing and Comparing Biorefinery Processing Routes: The Case of Xylitol 309Aikaterini D. Mountraki, Konstantinos R. Koutsospyros, and Antonis C. Kokossis12.1 Introduction 30912.2 Motivating Example 31012.3 The Three?]Layer Approach 31012.4 Production Paths to Xylitol 31312.4.1 Catalytic Process 31512.4.2 Biotechnological Process 31612.5 Scope for Process and Energy Integration 31712.5.1 Catalytic Process 31812.5.2 Biotechnological Process 32012.5.3 Summarizing Results 32212.6 Conclusion 325Acknowledgment 325References 32513 Determination of Optimum Condition for the Production of Rice Husk?-Derived Bio?]oil by Slow Pyrolysis Process 329Suzana Yusup, Chung Loong Yiin, Chiang Jinn Tan, and Bawadi Abdullah13.1 Introduction 32913.2 Experimental Study 33113.2.1 Biomass Preparation and Characterization 33113.2.2 Experimental Procedure 33213.2.3 Equipment 33213.2.4 Characterization of Bio?]oil 33313.3 Results and Discussion 33313.3.1 Characterization of RH 33313.3.2 Characterization of Bio?]oil 33313.3.3 Parametric Analysis 33513.3.4 Field Emission Scanning Electron Microscope 33613.3.5 Chemical Composition (GC-MS) Analysis 33713.4 Conclusion 338Acknowledgement 339References 33914 Overview of Safety and Health Assessment for Biofuel Production Technologies 341Mimi H. Hassim, Weng Hui Liew, and Denny K. S. Ng14.1 Introduction 34114.2 Inherent Safety in Process Design 34314.3 Inherent Occupational Health in Process Design 34414.4 Design Paradox 34514.5 Introduction to Biofuel Technologies 34714.6 Safety Assessment of Biofuel Production Technologies 34814.7 Health Assessment of Biofuel Production Technologies 35014.8 Proposed Ideas for Future Safety and Health Assessment in Biofuel Production Technologies 35114.9 Conclusions 354References 354Index 359

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.