Computer Vision

Computer Vision
-0 %
 HC gerader Rücken kaschiert
Lieferbar in 5-7 Tagen | Lieferzeit: Kurzfristig nicht lieferbar -Lieferbar in 5-7 Tagen I

Unser bisheriger Preis:ORGPRICE: 140,00 €

Jetzt 87,39 €* HC gerader Rücken kaschiert

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9781107011793
Veröffentl:
2019
Einband:
HC gerader Rücken kaschiert
Erscheinungsdatum:
22.03.2019
Seiten:
600
Autor:
Simon J. D. Prince
Gewicht:
1310 g
Format:
260x183x36 mm
Sprache:
Englisch
Beschreibung:

Prince, Simon J. D.Dr Simon J. D. Prince is a faculty member in the Department of Computer Science at University College London. He has taught courses on machine vision, image processing and advanced mathematical methods. He has a diverse background in biological and computing sciences and has published papers across the fields of computer vision, biometrics, psychology, physiology, medical imaging, computer graphics and HCI.
This modern treatment of computer vision focuses on learning and inference in probabilistic models as a unifying theme. It shows how to use training data to learn the relationships between the observed image data and the aspects of the world that we wish to estimate, such as the 3D structure or the object class, and how to exploit these relationships to make new inferences about the world from new image data. With minimal prerequisites, the book starts from the basics of probability and model fitting and works up to real examples that the reader can implement and modify to build useful vision systems. Primarily meant for advanced undergraduate and graduate students, the detailed methodological presentation will also be useful for practitioners of computer vision. - Covers cutting-edge techniques, including graph cuts, machine learning and multiple view geometry - A unified approach shows the common basis for solutions of important computer vision problems, such as camera calibration, face recognition and object tracking - More than 70 algorithms are described in sufficient detail to implement - More than 350 full-color illustrations amplify the text - The treatment is self-contained, including all of the background mathematics - Additional resources at computervisionmodels.com
A modern treatment focusing on learning and inference, with minimal prerequisites, real-world examples and implementable algorithms.
Part I. Probability: 1. Introduction to probability; 2. Common probability distributions; 3. Fitting probability models; 4. The normal distribution; Part II. Machine Learning for Machine Vision: 5. Learning and inference in vision; 6. Modeling complex data densities; 7. Regression models; 8. Classification models; Part III. Connecting Local Models: 9. Graphical models; 10. Models for chains and trees; 11. Models for grids; Part IV. Preprocessing: 12. Image preprocessing and feature extraction; Part V. Models for Geometry: 13. The pinhole camera; 14. Models for transformations; 15. Multiple cameras; Part VI. Models for Vision: 16. Models for style and identity; 17. Temporal models; 18. Models for visual words; Part VII. Appendices: A. Optimization; B. Linear algebra; C. Algorithms.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.