Exact Solutions of Einstein’s Field Equations

Exact Solutions of Einstein’s Field Equations
-0 %
 Paperback
Print on Demand | Lieferzeit: Print on Demand - Lieferbar innerhalb von 3-5 Werktagen I

Unser bisheriger Preis:ORGPRICE: 121,60 €

Jetzt 121,59 €* Paperback

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9780521467025
Veröffentl:
2015
Einband:
Paperback
Erscheinungsdatum:
02.03.2015
Seiten:
732
Autor:
Hans Stephani
Gewicht:
1240 g
Format:
244x170x40 mm
Sprache:
Englisch
Beschreibung:

Stephani, Hans
Hans Stephani gained his diploma, Ph.D. and Habilitation at the Friedrich-Schiller-Universität Jena. He became Professor of Theoretical Physics in 1992, before retiring in 2000. He has been lecturing in theoretical physics since 1964 and has published numerous papers and articles on relativity and optics. He is also the author of four books.Kramer, Dietrich
Dietrich Kramer is Professor of Theoretical Physics at the Friedrich-Schiller-Universität Jena. He graduated from this university, where he also finished his Ph.D. (1966) and Habilitation (1970). His current research concerns classical relativity. The majority of his publications are devoted to exact solutions in general relativity.MacCallum, Malcolm
Malcolm MacCallum is Professor of Applied Mathematics at the School of Mathematical Sciences, Queen Mary, University of London, where he is also Vice-Principal for Science and Engineering. He graduated from King's College, Cambridge and went on to complete his M.A. and Ph.D. there. His research covers general relativity and computer algebra, especially tensor manipulators and differential equations. He has published over 100 pages, review articles and books.Hoenselaers, Cornelius
Cornelius Hoenselaers gained his Diploma at Technische Universität Karlsruhe, his D.Sc. at Hiroshima Daigaku and his Habilitation at Ludwig-Maximilian Universität München. He is Reader in Relativity Theory at Loughborough University. He has specialized in exact solutions in general relativity and other non-linear partial differential equations, and published a large number of papers, review articles and books.Herlt, Eduard
Eduard Herlt is wissenschaftlicher Mitarbeiter at the Theoretisch Physikalisches Institut der Friedrich-Schiller-Universität Jena. Having studied physics as an undergraduate at Jena, he went on to complete his Ph.D. there as well as his Habilitation. He has had numerous publications including one previous book.
A paperback edition of a classic text, this book gives a unique survey of the known solutions of Einstein's field equations for vacuum, Einstein-Maxwell, pure radiation and perfect fluid sources. It introduces the foundations of differential geometry and Riemannian geometry and the methods used to characterize, find or construct solutions. The solutions are then considered, ordered by their symmetry group, their algebraic structure (Petrov type) or other invariant properties such as special subspaces or tensor fields and embedding properties. Includes all the developments in the field since the first edition and contains six completely new chapters, covering topics including generation methods and their application, colliding waves, classification of metrics by invariants and treatments of homothetic motions. This book is an important resource for graduates and researchers in relativity, theoretical physics, astrophysics and mathematics. It can also be used as an introductory text on some mathematical aspects of general relativity.
A paperback edition of a classic text, this book contains six new chapters, covering generation methods and their application, colliding waves, classification of metrics by invariants and treatments of homothetic motions. This book is an important resource for graduates and researchers in relativity, theoretical physics, astrophysics and mathematics.
Preface; List of tables; Notation; 1. Introduction; Part I. General Methods: 2. Differential geometry without a metric; 3. Some topics in Riemannian geometry; 4. The Petrov classification; 5. Classification of the Ricci tensor and the energy-movement tensor; 6. Vector fields; 7. The Newman-Penrose and related formalisms; 8. Continuous groups of transformations; isometry and homothety groups; 9. Invariants and the characterization of geometrics; 10. Generation techniques; Part II. Solutions with Groups of Motions: 11. Classification of solutions with isometries or homotheties; 12. Homogeneous space-times; 13. Hypersurface-homogeneous space-times; 14. Spatially-homogeneous perfect fluid cosmologies; 15. Groups G3 on non-null orbits V2. Spherical and plane symmetry; 16. Spherically-symmetric perfect fluid solutions; 17. Groups G2 and G1 on non-null orbits; 18. Stationary gravitational fields; 19. Stationary axisymmetric fields: basic concepts and field equations; 20. Stationary axisymmetiric vacuum solutions; 21. Non-empty stationary axisymmetric solutions; 22. Groups G2I on spacelike orbits: cylindrical symmetry; 23. Inhomogeneous perfect fluid solutions with symmetry; 24. Groups on null orbits. Plane waves; 25. Collision of plane waves; Part III. Algebraically Special Solutions: 26. The various classes of algebraically special solutions. Some algebraically general solutions; 27. The line element for metrics with =s=0=R11=R14=R44, +i 0; 28. Robinson-Trautman solutions; 29. Twisting vacuum solutions; 30. Twisting Einstein-Maxwell and pure radiation fields; 31. Non-diverging solutions (Kundt's class); 32. Kerr-Schild metrics; 33. Algebraically special perfect fluid solutions; Part IV. Special Methods: 34. Applications of generation techniques to general relativity; 35. Special vector and tensor fields; 36. Solutions with special subspaces; 37. Local isometric embedding of four-dimensional Riemannian manifolds; Part V. Tables: 38. The interconnections between the main classification schemes; References; Index.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.