Introduction to Nanomaterials

Introduction to Nanomaterials
-0 %
Besorgungstitel - wird vorgemerkt | Lieferzeit: Besorgungstitel - Lieferbar innerhalb von 10 Werktagen I

Unser bisheriger Preis:ORGPRICE: 147,40 €

Jetzt 147,39 €*

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9780470927076
Veröffentl:
2011
Erscheinungsdatum:
13.12.2011
Seiten:
488
Autor:
Omar Manasreh
Gewicht:
894 g
Format:
240x161x31 mm
Sprache:
Englisch
Beschreibung:

Omar Manasreh, PhD, is a Full Professor of Electrical Engineering at the University of Arkansas. Dr. Manasreh has received several awards, including a Science and Technology Achievement Award presented by the Air Force Materiel Command at Wright-Patterson Air Force Base and the Aubrey E. Harvey Graduate Research Award presented by the University of Arkansas chapter of Sigma Xi. He has published more than 130 papers in technical journals, presented over fifty papers at national and international meetings, and has participated in over sixty invited talks. Dr. Manasreh is a member of the IEEE, American Physical Society, and the Materials Research Society.
An invaluable introduction to nanomaterials and their applications
 
Offering the unique approach of applying traditional physics concepts to explain new phenomena, Introduction to Nanomaterials and Devices provides readers with a solid foundation on the subject of quantum mechanics and introduces the basic concepts of nanomaterials and the devices fabricated from them. Discussion begins with the basis for understanding the basic properties of semiconductors and gradually evolves to cover quantum structures--including single, multiple, and quantum wells--and the properties of nanomaterial systems, such as quantum wires and dots.
 
Written by a renowned specialist in the field, this book features:
* An introduction to the growth of bulk semiconductors, semiconductor thin films, and semiconductor nanomaterials
* Information on the application of quantum mechanics to nanomaterial structures and quantum transport
* Extensive coverage of Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein stastistics
* An in-depth look at optical, electrical, and transport properties
* Coverage of electronic devices and optoelectronic devices
* Calculations of the energy levels in periodic potentials, quantum wells, and quantum dots
 
Introduction to Nanomaterials and Devices provides essential groundwork for understanding the behavior and growth of nanomaterials and is a valuable resource for students and practitioners in a field full of possibilities for innovation and invention.
Preface xiii
 
Fundamental Constants xvii
 
1 Growth of Bulk, Thin Films, and Nanomaterials 1
 
1.1 Introduction, 1
 
1.2 Growth of Bulk Semiconductors, 5
 
1.2.1 Liquid-Encapsulated Czochralski (LEC) Method, 5
 
1.2.2 Horizontal Bridgman Method, 11
 
1.2.3 Float-Zone Growth Method, 14
 
1.2.4 Lely Growth Method, 16
 
1.3 Growth of Semiconductor Thin Films, 18
 
1.3.1 Liquid-Phase Epitaxy Method, 19
 
1.3.2 Vapor-Phase Epitaxy Method, 20
 
1.3.3 Hydride Vapor-Phase Epitaxial Growth of Thick GaN Layers, 22
 
1.3.4 Pulsed Laser Deposition Technique, 25
 
1.3.5 Molecular Beam Epitaxy Growth Technique, 27
 
1.4 Fabrication and Growth of Semiconductor Nanomaterials, 46
 
1.4.1 Nucleation, 47
 
1.4.2 Fabrications of Quantum Dots, 55
 
1.4.3 Epitaxial Growth of Self-Assembly Quantum Dots, 56
 
1.5 Colloidal Growth of Nanocrystals, 61
 
1.6 Summary, 63
 
Problems, 64
 
Bibliography, 67
 
2 Application of Quantum Mechanics to Nanomaterial Structures 68
 
2.1 Introduction, 68
 
2.2 The de Broglie Relation, 71
 
2.3 Wave Functions and Schr¨odinger Equation, 72
 
2.4 Dirac Notation, 74
 
2.4.1 Action of a Linear Operator on a Bra, 77
 
2.4.2 Eigenvalues and Eigenfunctions of an Operator, 78
 
2.4.3 The Dirac ´-Function, 78
 
2.4.4 Fourier Series and Fourier Transform in Quantum Mechanics, 81
 
2.5 Variational Method, 82
 
2.6 Stationary States of a Particle in a Potential Step, 83
 
2.7 Potential Barrier with a Finite Height, 88
 
2.8 Potential Well with an Infinite Depth, 92
 
2.9 Finite Depth Potential Well, 94
 
2.10 Unbound Motion of a Particle (E > V0) in a Potential Well With a Finite Depth, 98
 
2.11 Triangular Potential Well, 100
 
2.12 Delta Function Potentials, 103
 
2.13 Transmission in Finite Double Barrier Potential Wells, 108
 
2.14 Envelope Function Approximation, 112
 
2.15 Periodic Potential, 117
 
2.15.1 Bloch's Theorem, 119
 
2.15.2 The Kronig-Penney Model, 119
 
2.15.3 One-Electron Approximation in a Periodic Dirac ´-Function, 123
 
2.15.4 Superlattices, 126
 
2.16 Effective Mass, 130
 
2.17 Summary, 131
 
Problems, 132
 
Bibliography, 134
 
3 Density of States in Semiconductor Materials 135
 
3.1 Introduction, 135
 
3.2 Distribution Functions, 138
 
3.3 Maxwell-Boltzmann Statistic, 139
 
3.4 Fermi-Dirac Statistics, 142
 
3.5 Bose-Einstein Statistics, 145
 
3.6 Density of States, 146
 
3.7 Density of States of Quantum Wells, Wires, and Dots, 152
 
3.7.1 Quantum Wells, 152
 
3.7.2 Quantum Wires, 155
 
3.7.3 Quantum Dots, 158
 
3.8 Density of States of Other Systems, 159
 
3.8.1 Superlattices, 160
 
3.8.2 Density of States of Bulk Electrons in the Presence of a Magnetic Field, 161
 
3.8.3 Density of States in the Presence of an Electric Field, 163
 
3.9 Summary, 168
 
Problems, 168
 
Bibliography, 170
 
4 Optical Properties 171
 
4.1 Fundamentals, 172
 
4.2 Lorentz and Drude Models, 176
 
4.3 The Optical Absorption Coefficient of the Interband Transition in Direct Band Gap Semiconductors, 179
 
4.4 The Optical Absorption Coefficient of the Interband Transition in Indirect Band Gap Semiconductors, 185
 
4.5 The Optical Absorption Coefficient of the Interband Transition in Quantum Wells, 186
 
4.6 The Optical Abso
Lieferung vom Verlag mit leichten Qualitätsmängeln möglich

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.