Smart Material Systems and MEMS

Smart Material Systems and MEMS
-0 %
Design and Development Methodologies
Besorgungstitel - wird vorgemerkt | Lieferzeit: Besorgungstitel - Lieferbar innerhalb von 10 Werktagen I

Unser bisheriger Preis:ORGPRICE: 155,00 €

Jetzt 136,49 €*

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9780470093610
Veröffentl:
2006
Erscheinungsdatum:
01.10.2006
Seiten:
418
Autor:
Vijay K Varadan
Gewicht:
1076 g
Format:
255x195x29 mm
Sprache:
Englisch
Beschreibung:

Vijay K. Varadan currently holds the 21st Century Endowed Chair in Nano- and Biotechnologies and Medicine and is Distinguished Professor of Electrical Engineering and Distinguished Professor of Biomedical Engineering (College of Engineering) and Neurosurgery (College of Medicine) at the University of Arkansas, USA. He is also the Director of the Institute for Nano-, Micro- and Neuroelectronics, Sensors and Systems and the Director of the High-Density Electronics Center. He has concentrated on the design and development of various electronic, acoustic and structural composites, smart materials, structures and devices, including sensors, transducers, Micro Electromechanical Systems (MEMS), plus the synthesis and large-scale fabrication of carbon nanotubes, Nano Electromechanical Systems (NEMS), microwave, acoustic and ultrasonic wave absorbers and filters. He has developed neurostimulators, wireless microsensors and systems for the sensing and control of Parkinson's disease, epilepsy, glucose in the blood and Alzhiemer's disease. He is also currently developing both silicon- and organic-based wireless sensor systems with radio frequency identification (RFID) for human gait analysis and sleep disorders and various neurological disorders. He is an editor of the Journal of Wave-Material Interaction and the Editorin- Chief of the Journal of Smart Materials and Structures, as well as being an Associate Editor of the Journal of Microlithography, Microfabrication and Microsystems. In addition, he also serves on the editorial board of the International Journal of Computational Methods.
He has published more than 500 journal papers and 11 books. He holds 12 patents pertinent to conducting polymers, smart structures, smart antennas, phase shifters, carbon nanotubes, implantable devices for Parkinson's patients, MEMS accelerometers and gyroscopes.
 
K. J. Vinoy is an Assistant Professor in the Department of Electrical Communication Engineering at the Indian Institute of Science, Bangalore, India. He received an M.Tech degree in Electronics from the Cochin University of Science and Technology, India and a Ph.D. degree in Engineering Science and Mechanics from the Pennsylvania State University, USA, in 1993 and 2002, respectively. From 1994 to 1998, he worked at the National Aerospace Laboratories, Bangalore, India. Following this, he was a research assistant at the Center for the Engineering of Electronic and Acoustic Materials and Devices (CEEAMD) at the Pennsylvania State University from 1999 to 2002. He continued there to carry out postdoctoral research from 2002 to August 2003. His research interests include several aspects of microwave engineering, RF-MEMS and smart material systems. He has published over 50 papers in technical journals and conference proceedings. His other publications include two books, namely Radar Absorbing Materials: From Theory to Design and Characterization, and RF-MEMS and their Applications. He also holds one US patent.
 
S. Gopalakrishnan received his Master's Degree in Engineering Mechanics from the Indian Institute of Technology, Madras, Chennai, India and his Ph.D. degree from the School of Aeronautics and Astronautics, Purdue University, USA. He joined the Department of Aerospace Engineering at the Indian Institute of Science, Bangalore, India in November 1997 as Assistant Professor and is currently an Associate Professor in the same department. His areas of interest include structural dynamics, wave propagation, computational mechanics, smart structures, MEMS and nanocomposite structures. He is a Fellow of the Indian National Academy of Engineering and a recipient of the 'Satish Dhawan Young Scientist Award' for outstanding contributions in Aerospace Sciences from the Government of Karnataka, India. He serves on the editorial board of three prime international computational mechanics journals and has published 70 papers in international journals and 45 conference papers.
Smart technology is a progressive field that is currently being used to address many challenges in aerospace, automotive, civil, mechanical, biomedical and communication engineering disciplines. Influenced by biological systems, smart materials are often attached to or embedded into structural systems to enable them to sense disturbances, process the information and react to it. This therefore improves the overall reliability, efficiency and sustainability of a system or structure. Now, miniaturisation has resulted in faster devices with reduced fabrication costs and the possibility of integration with electronics, thereby simplifying systems and reducing the power requirements.
 

This book presents a unified treatment of the design and modelling of smart material systems and Micro-Electro-Mechanical Systems (MEMS), addressing both fabrication issues and outlining important potential application areas for the technology. With numerous case studies and illustrative examples, Varadan et al. cover in detail:
 
* the fundamentals of smart systems and materials characterization;
* design principles for sensors and actuators, analysing bulk sensors, micro sensors and some commonly available devices such as gyroscopes, pressure sensors and chemical and biosensors;
* the modelling of smart systems, including special techniques for studying MEMS- and carbon nanotube (CNT) -based sensors and actuators;
* fabrication techniques, providing details of bulk and surface micromachining concepts for silicon-based processing of MEMS and polymer-based systems;
* practical application issues, using smart technology to solve real world problems in a range of engineering fields.
 

A valuable reference for students taking courses in smart sensors, actuators and systems, Smart Material Systems and MEMS: Design and Development Methodologies is also useful for practising engineers, researchers and developers of microsystems working in industry.
Presenting unified coverage of the design and modeling of smart micro and macrosystems, this book addresses fabrication issues and outlines the challenges faced by engineers working with smart sensors in a variety of applications. Part I deals with the fundamental concepts of a typical smart system and its constituent components.
Preface.
 
About the Authors.
 
PART 1: FUNDAMENTALS.
 
1. Introduction to Smart Systems.
 
2. Processing of Smart Materials.
 
PART 2: DESIGN PRINCIPLES.
 
3. Sensors for Smart Systems.
 
4. Actuators for Smart Systems.
 
5. Design Examples for Sensors and Actuators.
 
PART 3: MODELING TECHNIQUES.
 
6. Introductory Concepts in Modeling.
 
7. Introduction to the Finite Element Method.
 
8. Modeling of Smart Sensors and Actuators.
 
9. Active Control Techniques.
 
PART 4: FABRICATION METHODS AND APPLICATIONS.
 
10. Silicon Fabrication Techniques for MEMS.
 
11. Polymeric MEMS Fabrication Techniques.
 
12. Integration and Packaging of Smart Microsystems.
 
13. Fabrication Examples of Smart Microsystems.
 
14. Structural Health Monitoring Applications.
 
15. Vibration and Noise-Control Applications.
 
Index.
Lieferung vom Verlag mit leichten Qualitätsmängeln möglich

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.