Ultra-Wideband Wireless Communications and Networks

Ultra-Wideband Wireless Communications and Networks
-0 %
Besorgungstitel - wird vorgemerkt | Lieferzeit: Besorgungstitel - Lieferbar innerhalb von 10 Werktagen I

Unser bisheriger Preis:ORGPRICE: 153,50 €

Jetzt 153,48 €*

Alle Preise inkl. MwSt. | Versandkostenfrei
Artikel-Nr:
9780470011447
Veröffentl:
2006
Erscheinungsdatum:
01.04.2006
Seiten:
320
Autor:
Xuemin Shen
Gewicht:
762 g
Format:
251x174x25 mm
Sprache:
Englisch
Beschreibung:

Professor Xuemin Shen works in the Department of Electrical and Computer Engineering at the University of Waterloo, Canada. His research interests are Wireless/Internet interworking, Resource and mobility management, Voice over mobile IP, WiFi, WAP, Bluetooth, UWB wireless applications, ad hoc wireless networks.
Ultra-wideband (UWB) technology has great potential for applications in wireless communications, radar and location. It has many benefits due to its ultra-wideband nature, which include high data rate, less path loss and better immunity to multipath propagation, availability of low-cost transceivers, low transmit power and low interference. Despite R&D results so far demonstrating that UWB radio is a promising solution for high-rate short-range wireless communications, further extensive investigation is necessary towards developing effective and efficient UWB communication systems and UWB technology.
List of Contributors. Preface. 1 Introduction (Robert Caiming Qiu, Xuemin (Sherman) Shen, Mohsen Guizani and Tho Le-Ngoc). 1.1 Fundamentals. 1.2 Issues Unique to UWB. 1.3 Emerging Technologies. References. 2 Modulation and Signal Detection in UWB (Uzoma A. Onunkwo and Ye (Geoffrey) Li). 2.1 Overview. 2.2 Single-Carrier-Based Modulation. 2.3 OFDM-Based Modulation. 2.4 Conclusion and Further Reading. References. 3 UWB Pulse Propagation and Detection (Robert Caiming Qiu). 3.1 Introduction. 3.2 UWB Pulse Propagation. 3.3 UWB Pulse Signal Detection. References. 4 Timing Synchronization for UWB Impulse Radios (Zhi Tian and Georgios B. Giannakis). 4.1 Introduction. 4.2 Signal Model. 4.3 Signal Detection and Symbol-Level Acquisition. 4.4 SAT and MAT: Templates with and without Timing. 4.5 Coarse Synchronization Using Symbol-Rate Samples. 4.6 Synchronization with Flexible Timing Resolution. 4.7 Timing Acquisition for Ad Hoc Multiple Access. 4.8 Demodulation and BER Sensitivity to Mistiming. 4.9 Concluding Summary. References. 5 Error Performance of Pulsed Ultrawideband Systems in Indoor Environments (Huaping Liu). 5.1 Introduction. 5.2 System Model. 5.3 Error Performance in Indoor Environments. References. 6 Mixed-Signal Ultrawideband Communications Receivers (Sebastian Hoyos and Brian M. Sadler). 6.1 Introduction. 6.2 Analog-to-Digital Conversion via Signal Expansion. 6.3 Mixed-Signal Communication Receivers Based on A/D Conversion via Signal Expansion. 6.4 Analog-to-Digital Conversion in the Frequency Domain. 6.5 Frequency-Domain Mixed-Signal Receivers. 6.6 Conclusions. References. 7 Trends in Ultrawideband Transceiver Design (Zhengyuan Xu). 7.1 Introduction. 7.2 Status of UWB Transceiver Design. 7.3 Digital UWB Receivers. 7.4 Analog/Digital UWB Transceivers. 7.5 Conclusions. Acknowledgments. References. 8 UWB MAC and Ad Hoc Networks ( Zihua Guo and Richard Yao). 8.1 Introduction. 8.2 QoS Scheduling in PNC. 8.3 Power Management in IEEE 802.15.3. 8.4 Adaptive Dly-ACK. 8.5 Ad Hoc Networks. 8.6 Summary. References. 9 Radio Resource Management for Ultra-Wideband Communications (Xuemin (Sherman) Shen, Weihua Zhuang, Hai Jiang and Jun Cai). 9.1 Introduction. 9.2 Radio Resource Management. 9.3 Multiple Access. 9.4 Overhead Reduction. 9.5 Power/Rate Allocation. 9.6 Conclusions. References. 10 Pulsed UWB Interference to Narrowband Receivers (Jay E. Padgett). 10.1 Introduction. 10.2 Pulsed UWB Signal Model. 10.3 Narrowband Receiver Model. 10.4 Equivalent Receiver Model and Response to a Pulse. 10.5 Response to a Pulse Sequence. 10.6 Simulating the Response to a Pulse Sequence. 10.7 General Properties of the IF Output. 10.8 Power Spectral Density. 10.9 Discrete PDF PSD Example: Equally Spaced, Equally Likely Time Offsets . 10.10 Continuous PDF PSD Examples. 10.11 Comparison of PSD and Simulation Results. 10.12 Statistical Properties of the Output Envelope. 10.13 Summary. References. 11 Digital-Carrier Spreading Codes for Baseband UWB Multiaccess (Liuqing Yang and Georgios B. Giannakis). 11.1 Introduction. 11.2 Digital-Carrier Multiband User Codes. 11.3 Low Duty-Cycle Access in the Presence of NBI. 11.4 Improved Rate Access in the Presence of Multipath. 11.5 Multiuser Interference Mitigation. 11.6 Summary. References. 12 Localization ( Kegen Yu, Harri Saarnisaari, Jean-Philippe Montillet, Alberto Rabbachin, Ian Oppermann and Giuseppe Thadeu Freitas de Abreu). 12.1 Introduction. 12.2 Time-of-Arrival Estimation. 12.3 Location and Tracking. 12.4 Location in Distributed Architectures. 12.5 Theoretical Positioning Accuracy. 12.6 Conclusions. Acknowledgment. References. Index.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.