The Mathematical Coloring Book

The Mathematical Coloring Book
-0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.
Mathematics of Coloring and the Colorful Life of its Creators
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar

Unser bisheriger Preis:ORGPRICE: 187,27 €

Jetzt 181,88 €* eBook

Artikel-Nr:
9780387746425
Veröffentl:
2008
Einband:
eBook
Seiten:
607
Autor:
Alexander Soifer
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

This is a unique type of book; at least, I have never encountered a book of this kind. The best description of it I can give is that it is a mystery novel, developing on three levels, and imbued with both educational and philosophical/moral issues. If this summary description does not help understanding the particular character and allure of the book, possibly a more detailed explanation will be found useful. One of the primary goals of the author is to interest readers—in particular, young mathematiciansorpossiblypre-mathematicians—inthefascinatingworldofelegant and easily understandable problems, for which no particular mathematical kno- edge is necessary, but which are very far from being easily solved. In fact, the prototype of such problems is the following: If each point of the plane is to be given a color, how many colors do we need if every two points at unit distance are to receive distinct colors? More than half a century ago it was established that the least number of colors needed for such a coloring is either 4, or 5, or 6 or 7. Well, which is it? Despite efforts by a legion of very bright people—many of whom developed whole branches of mathematics and solved problems that seemed much harder—not a single advance towards the answer has been made. This mystery, and scores of other similarly simple questions, form one level of mysteries explored. In doing this, the author presents a whole lot of attractive results in an engaging way, and with increasing level of depth.

This book covers the Ramsey Theory, from its history to its famous problems. It also offers studies of Issai Schur, Pierre Joseph, Henry Baudet, and B.L. van der Waerden, incorporating photos and correspondence never before published.

This is a unique type of book; at least, I have never encountered a book of this kind. The best description of it I can give is that it is a mystery novel, developing on three levels, and imbued with both educational and philosophical/moral issues. If this summary description does not help understanding the particular character and allure of the book, possibly a more detailed explanation will be found useful. One of the primary goals of the author is to interest readers—in particular, young mathematiciansorpossiblypre-mathematicians—inthefascinatingworldofelegant and easily understandable problems, for which no particular mathematical kno- edge is necessary, but which are very far from being easily solved. In fact, the prototype of such problems is the following: If each point of the plane is to be given a color, how many colors do we need if every two points at unit distance are to receive distinct colors? More than half a century ago it was established that the least number of colorsneeded for such a coloring is either 4, or 5, or 6 or 7. Well, which is it? Despite efforts by a legion of very bright people—many of whom developed whole branches of mathematics and solved problems that seemed much harder—not a single advance towards the answer has been made. This mystery, and scores of other similarly simple questions, form one level of mysteries explored. In doing this, the author presents a whole lot of attractive results in an engaging way, and with increasing level of depth.
Merry-Go-Round.- A Story of Colored Polygons and Arithmetic Progressions.- Colored Plane.- Chromatic Number of the Plane: The Problem.- Chromatic Number of the Plane: An Historical Essay.- Polychromatic Number of the Plane and Results Near the Lower Bound.- De Bruijn–Erd?s Reduction to Finite Sets and Results Near the Lower Bound.- Polychromatic Number of the Plane and Results Near the Upper Bound.- Continuum of 6-Colorings of the Plane.- Chromatic Number of the Plane in Special Circumstances.- Measurable Chromatic Number of the Plane.- Coloring in Space.- Rational Coloring.- Coloring Graphs.- Chromatic Number of a Graph.- Dimension of a Graph.- Embedding 4-Chromatic Graphs in the Plane.- Embedding World Records.- Edge Chromatic Number of a Graph.- Carsten Thomassen’s 7-Color Theorem.- Coloring Maps.- How the Four-Color Conjecture Was Born.- Victorian Comedy of Errors and Colorful Progress.- Kempe–Heawood’s Five-Color Theorem and Tait’s Equivalence.- The Four-Color Theorem.- The GreatDebate.- How Does One Color Infinite Maps? A Bagatelle.- Chromatic Number of the Plane Meets Map Coloring: Townsend–Woodall’s 5-Color Theorem.- Colored Graphs.- Paul Erd?s.- De Bruijn–Erd?s’s Theorem and Its History.- Edge Colored Graphs: Ramsey and Folkman Numbers.- The Ramsey Principle.- From Pigeonhole Principle to Ramsey Principle.- The Happy End Problem.- The Man behind the Theory: Frank Plumpton Ramsey.- Colored Integers: Ramsey Theory Before Ramsey and Its AfterMath.- Ramsey Theory Before Ramsey: Hilbert’s Theorem.- Ramsey Theory Before Ramsey: Schur’s Coloring Solution of a Colored Problem and Its Generalizations.- Ramsey Theory before Ramsey: Van der Waerden Tells the Story of Creation.- Whose Conjecture Did Van der Waerden Prove? Two Lives Between Two Wars: Issai Schur and Pierre Joseph Henry Baudet.- Monochromatic Arithmetic Progressions: Life After Van der Waerden.- In Search of Van der Waerden: The Early Years.- In Search of Van der Waerden: The Nazi Leipzig, 1933–1945.- In Search of Van der Waerden: The Postwar Amsterdam, 1945166.- In Search of Van der Waerden: The Unsettling Years, 1946–1951.- Colored Polygons: Euclidean Ramsey Theory.- Monochromatic Polygons in a 2-Colored Plane.- 3-Colored Plane, 2-Colored Space, and Ramsey Sets.- Gallai’s Theorem.- Colored Integers in Service of Chromatic Number of the Plane: How O’Donnell Unified Ramsey Theory and No One Noticed.- Application of Baudet–Schur–Van der Waerden.- Application of Bergelson–Leibman’s and Mordell–Faltings’ Theorems.- Solution of an Erd?s Problem: O’Donnell’s Theorem.- Predicting the Future.- What If We Had No Choice?.- A Glimpse into the Future: Chromatic Number of the Plane, Theorems and Conjectures.- Imagining the Real, Realizing the Imaginary.- Farewell to the Reader.- Two Celebrated Problems.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.