Ultra-Low Power Wireless Technologies for Sensor Networks

Ultra-Low Power Wireless Technologies for Sensor Networks
-0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar

Unser bisheriger Preis:ORGPRICE: 111,41 €

Jetzt 96,28 €* eBook

Artikel-Nr:
9780387493138
Veröffentl:
2007
Einband:
eBook
Seiten:
184
Autor:
Brian Otis
Serie:
Integrated Circuits and Systems
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

transconductance e?ciency of all critical devices in order to reduce the n- essary bias current. However, reducing the current density also results in a severely decreased device f . An optimization of the current density is re- T quired to provide the correct balance between transconductance e?ciency and bandwidth. Plots such as Figure 2. 1 are useful tools for designers when choosing appropriate transistor bias points. Technology scaling allows greatly increased f realization for a given IC. Thus, weak inversion biasing for RF T design will become increasingly useful in future technology nodes. Throughout this work, the IC of critical transistors will be discussed. Most of the RF devices are biased in moderate to weak inversion to achieve enhanced transconductance e?ciency and reduced bias current. 2. 2 MEMS Background The relatively new ?eld of Radio Frequency Microelectro Mechanical Systems (RF MEMS) provides unique opportunities for RF transceiver designers. This section provides background on RF MEMS and provides insight into the - portunities presented by these new technologies. The ?eld of RF MEMS - cludes the design and utilization of RF ?lters, resonators, switches, and other passive mechanical structures constructed using bulk processed integrated c- cuit fabrication techniques. To date, these devices have been commercially used as discrete board-mounted components, primarily used to enhance the miniaturization of mobile phones. However, RF MEMS components have the potential to be batch fabricated using existing integrated circuit fabrication techniques.

This book is written for academic and professional researchers designing communication systems for pervasive and low power applications. The main emphasis is on design techniques for low power, highly integrated transceivers.

transconductance e?ciency of all critical devices in order to reduce the n- essary bias current. However, reducing the current density also results in a severely decreased device f . An optimization of the current density is re- T quired to provide the correct balance between transconductance e?ciency and bandwidth. Plots such as Figure 2. 1 are useful tools for designers when choosing appropriate transistor bias points. Technology scaling allows greatly increased f realization for a given IC. Thus, weak inversion biasing for RF T design will become increasingly useful in future technology nodes. Throughout this work, the IC of critical transistors will be discussed. Most of the RF devices are biased in moderate to weak inversion to achieve enhanced transconductance e?ciency and reduced bias current. 2. 2 MEMS Background The relatively new ?eld of Radio Frequency Microelectro Mechanical Systems (RF MEMS) provides unique opportunities for RF transceiver designers. This section provides background on RF MEMS and provides insight into the - portunities presented by these new technologies. The ?eld of RF MEMS - cludes the design and utilization of RF ?lters, resonators, switches, and other passive mechanical structures constructed using bulk processed integrated c- cuit fabrication techniques. To date, these devices have been commercially used as discrete board-mounted components, primarily used to enhance the miniaturization of mobile phones. However, RF MEMS components have the potential to be batch fabricated using existing integrated circuit fabrication techniques.
Wireless Sensor Networks.- Low Power CMOS Design for Radio Frequencies.- Two Channel Baw-Based Transceiver.- Super-Regenerative Receiver Design.- Fully Integrated Super-Regenerative Transceiver.- Integration Techniques.- Ultra-Low Power Radio in a Package Using Ultra-Wide Band Technology.- Low Energy Wireless Communication.- Conclusions.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.