Working with Dynamic Crop Models

Working with Dynamic Crop Models
-0 %
Methods, Tools and Examples for Agriculture and Environment
Besorgungstitel - wird vorgemerkt | Lieferzeit: Besorgungstitel - Lieferbar innerhalb von 10 Werktagen I

Unser bisheriger Preis:ORGPRICE: 150,10 €

Jetzt 150,08 €*

Alle Preise inkl. MwSt. | Versandkostenfrei
Daniel Wallach
1112 g
238x158x35 mm

Daniel Wallach focuses on the application of statistical methods of dynamic systems, specifically on agronomy models. He has published in Agriculture, Ecosystems and Environment; Journal of Agricultural, Biological and Environmental Statistics and European Journal of Agronomy.David Makowski is an expert with the European Food Safety authority and the French Agency for Food, Environmental and Occupational Health and Safety and has authored 50 refereed articles and 10 book chapters on statistics, agricultural modeling and risk analysis.James Jones has authored more than 250 refereed scientific journal articles, developed and teached a graduate course based mostly on this book. He is a Fellow of the American Society of Agricultural and Biological Engineers, Fellow of the American Society of Agronomy, Fellow of the Soil Science Society of America and serves on several international science advisory committees related to agriculture and climate.Francois Brun specializes in agricultural modeling systems using the R language, and has published in Journal of Experimental Botany.

Working with Dynamic Crop Models: Methods, Tools and Examples for Agriculture and Environment, 3e, is a complete guide to working with dynamic system models, with emphasis on models in agronomy and environmental science. The introductory section presents the foundational information for the book including the basics of system models, simulation, the R programming language, and the statistical notions necessary for working with system models. The most important methods of working with dynamic system models, namely uncertainty and sensitivity analysis, model calibration (frequentist and Bayesian), model evaluation, and data assimilation are all treated in detail, in individual chapters.

New chapters cover the use of multi-model ensembles, the creation of metamodels that emulate the more complex dynamic system models, the combination of genetic and environmental information in gene-based crop models, and the use of dynamic system models to aid in sampling.

The book emphasizes both understanding and practical implementation of the methods that are covered. Each chapter simply and clearly explains the underlying principles and assumptions of each method that is presented, with numerous examples and illustrations. R code for applying the methods is given throughout. This code is designed so that it can be adapted relatively easily to new problems.

Section A Background 1. Basics of Agricultural System Models 2. The R Programming Language and Software 3. Simulation with Dynamic System Models 4. Statistical Notions Useful for Modeling 5. Regression Analysis, Frequentist

Section B Basic methods 6. Uncertainty and Sensitivity Analysis 7. Calibration of System Models

8. Parameter Estimation With Bayesian Methods 9. Model Evaluation 10. Putting It All Together in a Case Study

Section C Advanced Methods 11. Metamodeling 12. Multimodel Ensembles 13. Gene-Based Crop Models 14. Data Assimilation for Dynamic Models 15. Models as an Aid to Sampling

Appendix 1: The Models Included in the ZeBook R Package: Description, R Code, and Examples of Results

Appendix 2: An Overview of the R Package ZeBook

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.