High-Dimensional Chaotic and Attractor Systems

High-Dimensional Chaotic and Attractor Systems
-0 %
Der Artikel wird am Ende des Bestellprozesses zum Download zur Verfügung gestellt.
A Comprehensive Introduction
 eBook
Sofort lieferbar | Lieferzeit: Sofort lieferbar

Unser bisheriger Preis:ORGPRICE: 161,89 €

Jetzt 149,78 €* eBook

Artikel-Nr:
9781402054563
Veröffentl:
2007
Einband:
eBook
Seiten:
697
Autor:
Vladimir G. Ivancevic
Serie:
32, Intelligent Systems, Control and Automation: Science and Engineering
eBook Typ:
PDF
eBook Format:
Reflowable eBook
Kopierschutz:
Digital Watermark [Social-DRM]
Sprache:
Englisch
Beschreibung:

If we try to describe real world in mathematical terms, we will see that real life is very often a high–dimensional chaos. Sometimes, by ‘pushing hard’, we manage to make order out of it; yet sometimes, we need simply to accept our life as it is. To be able to still live successfully, we need tounderstand, predict, and ultimately control this high–dimensional chaotic dynamics of life. This is the main theme of the present book. In our previous book, Geometrical - namics of Complex Systems, Vol. 31 in Springer book series Microprocessor– Based and Intelligent Systems Engineering, we developed the most powerful mathematical machinery to deal with high–dimensional nonlinear dynamics. In the present text, we consider the extreme cases of nonlinear dynamics, the high–dimensional chaotic and other attractor systems. Although they might look as examples of complete disorder – they still represent control systems, with their inputs, outputs, states, feedbacks, and stability. Today, we can see a number of nice books devoted to nonlinear dyn- ics and chaos theory (see our reference list). However, all these books are only undergraduate, introductory texts, that are concerned exclusively with oversimpli?ed low–dimensional chaos, thus providing only an inspiration for the readers to actually throw themselves into the real–life chaotic dynamics.
If we try to describe real world in mathematical terms, we will see that real life is very often a high-dimensional chaos. Sometimes, by 'pushing hard', we manage to make order out of it; yet sometimes, we need simply to accept our life as it is. To be able to still live successfully, we need tounderstand, predict, and ultimately control this high-dimensional chaotic dynamics of life. This is the main theme of the present book. In our previous book, Geometrical - namics of Complex Systems, Vol. 31 in Springer book series Microprocessor- Based and Intelligent Systems Engineering, we developed the most powerful mathematical machinery to deal with high-dimensional nonlinear dynamics. In the present text, we consider the extreme cases of nonlinear dynamics, the high-dimensional chaotic and other attractor systems. Although they might look as examples of complete disorder - they still represent control systems, with their inputs, outputs, states, feedbacks, and stability. Today, we can see a number of nice books devoted to nonlinear dyn- ics and chaos theory (see our reference list). However, all these books are only undergraduate, introductory texts, that are concerned exclusively with oversimpli?ed low-dimensional chaos, thus providing only an inspiration for the readers to actually throw themselves into the real-life chaotic dynamics.
If we try to describe real world in mathematical terms, we will see that real life is very often a high–dimensional chaos. Sometimes, by ‘pushing hard’, we manage to make order out of it; yet sometimes, we need simply to accept our life as it is. To be able to still live successfully, we need tounderstand, predict, and ultimately control this high–dimensional chaotic dynamics of life. This is the main theme of the present book. In our previous book, Geometrical - namics of Complex Systems, Vol. 31 in Springer book series Microprocessor– Based and Intelligent Systems Engineering, we developed the most powerful mathematical machinery to deal with high–dimensional nonlinear dynamics. In the present text, we consider the extreme cases of nonlinear dynamics, the high–dimensional chaotic and other attractor systems. Although they might look as examples of complete disorder – they still represent control systems, with their inputs, outputs, states, feedbacks, and stability. Today, we can see a number of nice books devoted to nonlinear dyn- ics and chaos theory (see our reference list). However, all these books are only undergraduate, introductory texts, that are concerned exclusively with oversimpli?ed low–dimensional chaos, thus providing only an inspiration for the readers to actually throw themselves into the real–life chaotic dynamics.
to Attractors and Chaos.- Smale Horseshoes and Homoclinic Dynamics.- 3–Body Problem and Chaos Control.- Phase Transitions and Synergetics.- Phase Synchronization in Chaotic Systems.- Josephson Junctions and Quantum Engineering.- Fractals and Fractional Dynamics.- Turbulence.- Geometry, Solitons and Chaos Field Theory.

Kunden Rezensionen

Zu diesem Artikel ist noch keine Rezension vorhanden.
Helfen sie anderen Besuchern und verfassen Sie selbst eine Rezension.